Estimation of N^6 -Methyladenosine (m^6A) Specific Binding mRNA Fragment Proportion

Jingxuan Bao

Xi'an Jiaotong-Liverpool University

Superviser: Jionglong Su Co-supervisor: Jia Meng

May 7, 2019

Overview

Introduction

1) Biological Background 2) Motivation and Objectives

Methodology

1) ISOpureR Method 2) CLARKE Method

Results and Discussions

1) Simulated Data 2) Real Data

Conclusions

1) Conclusions

2) Contributions

Reference

Q & A

Introduction

Biological Background

What Is $m^6 A$

Figure: N⁶-Methyladenosine(Roundtree et al., 2017)

Jingxuan Bao (XJTLU)

э.

Why Is It Important

RNA methylation patterns play an important biological function in the regulation of different cellular processes, such as metabolism, embryonic development, and stem cell self-renewal.

Biological Background

Why Is It Important

There are links between alteration in m^6A levels and abnormal cellular differentiation states present in cancer.

Figure: Self-renewal of glioblastoma stem cells is regulated by m^6A RNA methylation (Cui et al., 2017)

Motivation and Objectives

3

• • • • • • • • • • • •

Motivation

Problems of RNA Methylation Experiment

- High Expense;
- Low output;
- o . . .

Alternative Way

Estimate the level of RNA methylation with application of gene expression data.

< ∃ > <

Alternative Way

Figure: Introduction to The Gene Expression Data (Dominissini et al., 2013)

Jingxuan Bao ((XJ	ITLI	U)
----------------	-----	------	----

May 7, 2019 10 / 75

3

Aims and Objectives

Figure: Introduction to The Gene Expression Data (Dominissini et al., 2013)

Estimation of m^6A -specific binding mRNA fragment proportion from IP sample with reference of input sample

Jingxuan Bao (XJTLU)

May 7, 2019 11 / 75

Methodology

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 12 / 75

3

Estimation by Comparison

Two Problems

The problem of deconvolution of m^6A specific binding mRNA in the IP sample with the reference of input sample.

The problem of deconvolution of pure cancer cell in the tumour sample with the reference of normal sample.

Reasons

Both data are biological data, which implies we have to handle with the biological noise.

Previous Work - Tumour Purity

- ISOpureR Method
- CLARKE Method

Jingxuan Bao (XJTLU)

Method Description

Quon et al. (2013) describe the problem as follows (all the "**bold**" symbols refer to a vector or a matrix):

$$m{t}_{m{n}} = lpha_{m{n}}m{c}_{m{n}} + (1-lpha_{m{n}})m{h}_{m{n}} + m{e}_{m{n}}$$

- *t_n*: vector of tumour sample;
- α_n : the proportion of cancer cells in the tumour sample;
- **h**_n: vector of normal sample;
- *e_n*: error.

Method Description

Quon et al. (2013) describe the problem as follows (all the "**bold**" symbols refer to a vector or a matrix):

$$m{t}_{m{n}} = lpha_{m{n}}m{c}_{m{n}} + \sum_{m{r}=1}^R heta_{m{n},m{r}}m{b}_{m{r}} + m{e}_{m{n}}$$

- *t_n*: Vector of tumour sample;
- α_n : The proportion of cancer cells in the tumour cells;
- *c_n*: Vector of pure cancer sample;
- **b**_r: Vector of healthy profile;
- en: Error.

- 4 週 ト - 4 三 ト - 4 三 ト

Data Transformation

Discertisation

Round each element of t_n to the nearest non-negative integer to obtain our transformed tumour profiles x_n .

Reasons:

- Rescale the tumour profiles;
- Balance the influence of shared parameters.

Rescaling

Divide each normal profile b_r by the sum of its elements.

Reasons:

Allow $\boldsymbol{b_r}$ to be interpreted as a discrete probability distribution over transcripts.

• • • • • • • • • • • •

Model Formulation

Method Description

Quon et al. (2013) describe the problem as follows (all the "**bold**" symbols refer to a vector or a matrix):

$$oldsymbol{x}_{oldsymbol{n}} = lpha_{oldsymbol{n}}oldsymbol{c}_{oldsymbol{n}} + \sum_{oldsymbol{r}=1}^R heta_{oldsymbol{n},oldsymbol{r}}oldsymbol{b}_{oldsymbol{r}}$$

- xn: Discretised tumour profiles;
- α_n : The proportion of cancer cells in the tumour cells;
- *c_n*: Vector of pure cancer sample;
- **b**_r: Vector of healthy profile.

Model Formulation

Maximise the complete likelihood function to find the most proper estimator:

$$\mathbb{L} = p(\boldsymbol{m}|\boldsymbol{k}',\boldsymbol{B},\boldsymbol{\omega}) \prod_{n=1}^{N} p(\boldsymbol{c_n}|\boldsymbol{k_n},\boldsymbol{m}) p(\boldsymbol{\theta_n}|\boldsymbol{v}) p(\boldsymbol{x_n}|\boldsymbol{B},\boldsymbol{\theta_n},\boldsymbol{c_n})$$

where

•
$$p(\boldsymbol{m}|k', \boldsymbol{B}, \boldsymbol{\omega}) = Dirichlet(\boldsymbol{m}|k', \boldsymbol{B}, \boldsymbol{\omega});$$

• **m** = Reference cancer profile estimated from the tumour profile data;

- k' = The strength parameter of the Dirichlet distribution over m;
- $B = [b_1 \ b_2 \ \dots \ b_R]$, with b_r being the vector of healthy profile;
- ω = The weights on the normal profiles $b_{r \cdot \langle \Box \rangle} \in \mathbb{R}$ is set on the normal profiles $b_{r \cdot \langle \Box \rangle} \in \mathbb{R}$ is set of the set of th

Model Formulation

Maximise the complete likelihood function to find the most proper estimator:

$$\mathbb{L} = p(\boldsymbol{m}|\boldsymbol{k}',\boldsymbol{B},\boldsymbol{\omega}) \prod_{n=1}^{N} p(\boldsymbol{c_n}|\boldsymbol{k_n},\boldsymbol{m}) p(\boldsymbol{\theta_n}|\boldsymbol{v}) p(\boldsymbol{x_n}|\boldsymbol{B},\boldsymbol{\theta_n},\boldsymbol{c_n})$$

where

•
$$p(\boldsymbol{c_n}|k_n, \boldsymbol{m}) = Dirichlet(\boldsymbol{c_n}|k_n\boldsymbol{m});$$

- **c**_n = Vector of pure cancer sample;
- k_n = Strength parameter of the Dirichlet distribution over c_n given m;
- m = Reference cancer profile estimated from the tumour profile data.

< ロ > < 同 > < 三 > < 三

Model Formulation

Maximise the complete likelihood function to find the most proper estimator:

$$\mathbb{L} = p(\boldsymbol{m}|k', \boldsymbol{B}, \boldsymbol{\omega}) \prod_{n=1}^{N} p(\boldsymbol{c_n}|k_n, \boldsymbol{m}) p(\boldsymbol{\theta_n}|\boldsymbol{v}) p(\boldsymbol{x_n}|\boldsymbol{B}, \boldsymbol{\theta_n}, \boldsymbol{c_n})$$

where

- $p(\theta_n | \mathbf{v}) = Dirichlet(\theta_n | \mathbf{v});$
- $\boldsymbol{\theta}_{\boldsymbol{n}} = [\theta_{\boldsymbol{n},1} \; \theta_{\boldsymbol{n},2} \; \dots \; \theta_{\boldsymbol{n},R} \; \alpha_{\boldsymbol{n}}];$
- $\mathbf{v} = Both$ the mean and strength of a Dirichlet distribution over θ_n .

Model Formulation

Maximise the complete likelihood function to find the most proper estimator:

$$\mathbb{L} = p(\boldsymbol{m}|k', \boldsymbol{B}, \boldsymbol{\omega}) \prod_{n=1}^{N} p(\boldsymbol{c_n}|k_n, \boldsymbol{m}) p(\boldsymbol{\theta_n}|\boldsymbol{v}) p(\boldsymbol{x_n}|\boldsymbol{B}, \boldsymbol{\theta_n}, \boldsymbol{c_n})$$

where

•
$$p(\mathbf{x}_n | \mathbf{B}, \mathbf{\theta}_n, \mathbf{c}_n) = Multinomial(\mathbf{x}_n | \hat{\mathbf{x}}_n);$$

- **x**_n = Discretised tumour profiles;
- $B = [b_1 \ b_2 \ ... \ b_R]$, with b_r being the vector of healthy profile;
- $\boldsymbol{\theta}_{\boldsymbol{n}} = [\theta_{\boldsymbol{n},1} \ \theta_{\boldsymbol{n},2} \ \dots \ \theta_{\boldsymbol{n},R} \ \alpha_{\boldsymbol{n}}];$
- **c**_n = the cancer profiles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Model Formulation

To maximise the complete likelihood function

$$\mathbb{L} = p(\boldsymbol{m}|k', \boldsymbol{B}, \boldsymbol{\omega}) \prod_{n=1}^{N} p(\boldsymbol{c_n}|k_n, \boldsymbol{m}) p(\boldsymbol{\theta_n}|\boldsymbol{v}) p(\boldsymbol{x_n}|\boldsymbol{B}, \boldsymbol{\theta_n}, \boldsymbol{c_n})$$

is to minimise the nimus complete log-likelihood function, $-log\mathbb{L}$, which is

$$-logp(\boldsymbol{m}|k',\boldsymbol{B},\boldsymbol{\omega}) - \sum_{n=1}^{N} \left[logp(\boldsymbol{c_n}|k_n,\boldsymbol{m}) + logp(\boldsymbol{\theta_n}|\boldsymbol{v}) + log(\boldsymbol{x_n}|\boldsymbol{B},\boldsymbol{\theta_n},\boldsymbol{c_n}) \right]$$

by applying the flexible preconditioned conjugate gradient method.

• • • • • • • • • • • •

Method Description

For the pure sample A and B, with mixed sample AB, Clarke et al. (2010) describe the problem as follows (all the "**bold**" symbols refer to a vector or a matrix):

$$E_i(AB) = p_A E_i(A) + (1 - p_A) E_i(B) + \epsilon.$$

where

- $\boldsymbol{E}(A) = (E_1(A), \cdots, E_m(A))$, gene expression of pure sample A;
- $\boldsymbol{E}(B) = (E_1(B), \cdots, E_m(B))$, gene expression of pure sample B;
- $\boldsymbol{E}(AB) = (E_1(AB), \cdots, E_m(AB))$, gene expression of mixed sample;
- p_A = The true proportion of profile A in profile AB;
- ϵ : error.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Method Description

According to Gosink et al. (2008), ratio of gene expression is given by

$$R_i = \frac{E_i(AB)}{E_i(A)}$$

In the noiseless case, we have

$$R_i = p_A \frac{E_i(A)}{E_i(A)} + (1 - p_A) \frac{E_i(B)}{E_i(A)}$$

Under the assumption that $E_i(B) \rightarrow 0$, we have $min_iR_i = p_A$, that is,

$$\lim_{E_i(B)\to 0} R_i = p_A + (1-p_A)\frac{E_i(B)}{E_i(A)} = p_A.$$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Data Transformation

Reason: With the influence of noise, the minimum ratio is likely to be **underestimated** compared with the true proportion; performance can be improved by **increasing the small ratio values** while **decreasing the large ratio values** (Gosink et al., 2007).

Transformation: According to Clarke et al. (2010), we transforming both E(A) and E(AB) into the form

$$tE_i(AB) = log(1 + \alpha E_i(AB))$$
$$tE_i(A) = log(1 + \alpha E_i(A))$$

for some $\alpha > 0$ for all *i*.

Model Formulation

By Clarke et al. (2010), the mean of tR_i as a function of α is defined as

$$\overline{tR_i(\alpha)} = \frac{1}{m} \sum_{i=1}^m \left[\frac{\log(1 + \alpha E_i(AB))}{\log(1 + \alpha E_i(A))} \right]$$

Jingxuan Bao (XJTLU)

t ► < E ► E ∽ ९.० May 7, 2019 29 / 75

< ロ > < 同 > < 三 > < 三

Principal Components Analysis

Clarke et al. (2010) plot the scree plot of CLARKE model,

Figure: Scree Plot of the Dataset 1

Figure: Scree Plot of the Dataset 2

CLARKE Method

Principal Components Analysis

Clarke et al. (2010) plot the scree plot of CLARKE model,

Figure: Scree Plot of the Dataset 1

The point in red gives the minimum ratio, or say, the most accurate estimated proportion; and according to the knowledge of principal components analysis, this point is located at the 'knee' or 'elbow' of the curve.

Algorithm

Original Model

Parametrise the curve \Rightarrow Calculate the first derivative \Rightarrow Calculate the arc-length \Rightarrow **Reparametrise the curve into unit-speed curve** \Rightarrow Calculate the second derivative \Rightarrow Calculate the curvature \Rightarrow The radius of curvature is the reciprocal of obtained curvature

Improved Model

Parametrise the curve \Rightarrow Calculate the first derivative \Rightarrow Calculate the second derivative \Rightarrow Calculate the cross product of first and second derivatives \Rightarrow Calculate the curvature \Rightarrow The radius of curvature is the reciprocal of obtained curvature

Results and Discussions

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 33 / 75

Simulated Data Simple Extreme Data

< ロ > < 同 > < 三 > < 三

Simulated Data - Simple Extreme Data

Gene Sites	Input Sample	Pure m ⁶ A Sample
Gene site 1	1000	0
Gene site 2	1000	0
••••		
	• • •	
Gene site 250	1000	0
Gene site 251	0	1000
Gene site 252	0	1000
•••	•••	
Gene site 499	0	1000
Gene site 500	0	1000

Table: Generated Input Sample and Pure m^6A Sample

Jingxuan Bao (XJTLU)

3

Simulated Data - Simple Extreme Data

Generation of IP Sample

Next, we apply **binomial distribution** to generate the IP samples with different mixing proportions with respect to the **input profiles**, 10%, 20%, \cdots , 90%; and for each proportion, we generate **three** different samples.

Jingxuan Bao (XJTLU)

May 7, 2019 36 / 75
Simulated Data - Simple Extreme Data

Results of Simple Extreme Data

	Purity	Purity 10%		Purity 20%			
Methods		Set1	Set2	Set3	Set1	Set2	Set3
ISOpureR		0.000	0.000	0.000	0.000	0.000	0.000
CLARKE		$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
		Purity 30%		Purity 40%			
ISOpureR		0.000	0.000	0.000	0.000	0.000	0.000
CLARKE		$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
		Purity 50%		P	urity 60	%	
ISOpureR		0.002	0.003	0.000	0.286	0.286	0.286
CLARKE		0.127	0.127	0.127	0.246	0.244	0.244

Table: Results of Simple Extreme Datasets

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 37 / 75

3

(日) (同) (三) (三)

Simulated Data - Simple Extreme Data

Results of Simple Extreme Data

	Purity	Purity 60%			Purity 70%		
Methods		Set1	Set2	Set3	Set1	Set2	Set3
ISOpureR		0.286	0.286	0.286	0.575	0.570	0.571
CLARKE		0.246	0.244	0.244	0.175	0.180	0.178
		Purity 80%			P	urity 90'	%
ISOpureR		1.000	1.000	1.000	1.000	1.000	1.000
CLARKE		0.121	0.118	0.119	0.056	0.058	0.056

Table: Results of Simple Extreme Datasets (Continued)

< ロ > < 同 > < 三 > < 三

Simulated Data - Simple Extreme Data

Gene Sites	Input Sample	Pure m ⁶ A Sample
Gene site 1	1000	0
Gene site 2	1000	0
	• • •	
Gene site 250	1000	0
Gene site 251	0	1000
Gene site 252	0	1000
•••	•••	
Gene site 499	0	1000
Gene site 500	0	1000

Table: Generated Input Sample and Pure m^6A Sample

Jingxuan Bao (XJTLU)

3

(日) (周) (三) (三)

Simulated Data Simple Real Data - Generation

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 40 / 75

3

-

• • • • • • • • • • • •

Generate simulated data using experiment 'human-A549-C'

- Generate the pure m^6A sample by **permutating** the input sample;
- Randomly choose the same 500 gene sites from input sample and pure m^6A sample to form our simulated input sample and simulated pure m^6A sample;
- Apply **binomial distribution** to generate the IP samples with different mixing proportions (10%, 20%, ···, 90%) with respect to the **input profiles**; and for each proportion, we generate **30** different samples.

(日) (周) (三) (三)

Simulated Data Simple Real Data - General Results

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 42 / 75

3

< ロ > < 同 > < 三 > < 三

General Impression

Figure: Box Plot of ISOpureR Method

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 43 / 75

General Impression

Figure: Box Plot of CLARKE Method

Jingxuan Bao (XJTLU)

FYP Presentation

Simulated Data Simple Real Data - Data Analysis of ISOpureR Method

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 45 / 75

3

< 🗇 🕨 < 🖃 🕨

Linear Regression

Assume the results of ISOpureR method satisfies the linear regression model, which is

$$y = \beta_0 + \beta_1 x + \epsilon$$

with assumption (Prabhakaran, 2016),

- The y-values (or the errors) are independent.
- The *y*-values can be expressed as a linear function of the *x* variable.
- Variation of observations around the regression line (the residual SE) is constant (homoscedasticity).
- The residuals of y value (or the error) are normally distributed.

(日) (周) (三) (三)

Linear Regression

Figure: Linear Regression of ISOpureR Method

Jingxuan Bao (XJTLU)

Test of Significance

• H_0 : the coefficients of the linear regression model is equal to 0.

• H_1 : the coefficients of the linear regression model is not equal to 0. **Results:** p-value < 2 × 10⁻¹⁶, $R^2 = 0.9952$

Lack-of-Fit Test

- *H*₀: linear model adequately fits data.
- *H*₁: linear model does not adequately fit data.

Results: *p*-*value* $< 2.2 \times 10^{-16}$

Quadratic Polynomial Regression

Assume the results of ISOpureR method satisfies the quadratic polynomial regression model, which is

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

with assumption (Prabhakaran, 2016),

- The y-values (or the errors) are independent.
- The *y*-values can be expressed as a quadratic polynomial function of the *x* variable.
- Variation of observations around the regression line (the residual SE) is constant (homoscedasticity).
- The residuals of y value (or the error) are normally distributed.

(日) (周) (三) (三)

= 900

Quadratic Polynomial Regression

Figure: Quadratic Polynomial Regression of ISOpureR Method

Jingxuan Bao (XJTLU)

May 7, 2019 50 / 75

Image: A math a math

Test of Significance

- *H*₀ : the coefficients of the quadratic polynomial regression model is equal to 0.
- *H*₁ : the coefficients of the quadratic polynomial regression model is not equal to 0.

Results: p-value $< 2 \times 10^{-16}$, $R^2 = 0.9981$

Lack-of-Fit Test

• *H*₀: quadratic polynomial model adequately fits data.

• *H*₁: quadratic polynomial model does not adequately fit data. **Results:** *p*-value = 0.9577

(日) (周) (三) (三)

Diagnostic Test

Figure: Diagnostic Test for Quadratic Polynomial Regression of ISOpureR Method

Jingxuan Bao (XJTLU)

May 7, 2019 52 / 75

Shapiro-Wild Test

- H₀: the sample came from a normally distributed population.
- H_1 : the sample did not come from a normally distributed population. **Results:** p-value = 1.365×10^{-5}

Second Order Median Regression

Assume the results of ISOpureR method satisfies the median regression model, which is

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + F^{-1}(0.5)$$

where α_0 , α_1 and α_2 are the coefficients of the median regression model; *F* represents the common distribution function of the errors **without any distributional assumptions**.

Lack-of-Fit Test

- *H*₀: second order median regression model adequately fits data.
- *H*₁: second order median regression model does not adequately fit data.

Results: *p*-*value* = 0.21

(日) (周) (三) (三)

Second Order Median Regression

Figure: Second Order Median Regression of ISOpureR Method

Jingxuan Bao (XJTLU)

May 7, 2019 55 / 75

A ∰ ► A ∃

Simulated Data Simple Real Data - Data Analysis of CLARKE Method

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 56 / 75

- ∢ ∃ ▶

Linear Regression

Assume the results of CLARKE method satisfies the linear regression model, which is

$$y = \beta_0 + \beta_1 x + \epsilon$$

with assumption (Prabhakaran, 2016),

- The y-values (or the errors) are independent.
- The *y*-values can be expressed as a linear function of the *x* variable.
- Variation of observations around the regression line (the residual SE) is constant (homoscedasticity).
- The residuals of y value (or the error) are normally distributed.

(日) (周) (三) (三)

Linear Regression

Figure: Regression of CLARKE Methods

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 58 / 75

Test of Significance

• H_0 : the coefficients of the linear regression model is equal to 0.

• H_1 : the coefficients of the linear regression model is not equal to 0. **Results:** p-value < 2 × 10⁻¹⁶, $R^2 = 0.8154$

Lack-of-Fit Test

- *H*₀: linear model adequately fits data.
- *H*₁: linear model does not adequately fit data.

Results: *p*-*value* = 0.1153

Diagnostic Test

Figure: Diagnostic Test of CLARKE Regression Model

Jingxuan Bao (XJTLU)

Shapiro-Wild Test

- H₀: the sample came from a normally distributed population.
- H_1 : the sample did not come from a normally distributed population. **Results:** p-value = 1.136×10^{-11}

Median Regression

Assume the results of CLARKE method satisfies the median regression model, which is

$$y = \alpha_0 + \alpha_1 x + F^{-1}(0.5)$$

where α_0 and α_1 are the coefficients of the median regression model; *F* represents the common distribution function of the errors **without any distributional assumptions**.

Lack-of-Fit Test

- *H*₀: median regression model adequately fits data.
- *H*₁: median regression model does not adequately fit data. **Results:** *p*-value = 0.09

(日) (同) (三) (三)

Median Regression

Figure: Median Regression of CLARKE Method

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 63 / 75

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 64 / 75

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example of real data

Gene Sites	SRR1182615		SRR1182630
Site 1	32		0
Site 2	98		0
•••		• • •	
•••	•••	• • •	
Site 33448	97	•••	17
Site 33449	106	•••	19
Site 33450	90	•••	18
•••		• • •	
•••	•••	•••	•••
Site 69445	15	•••	9
Site 69446	3	•••	8

Table: Real Data - 'human-A549-METTL3-'

Jingxuan Bao (XJTLU)

FYP Presentation

Results of real data

Method	human-A549-C					
	SRR1182619	SRR1182621	SRR1182623			
ISOpureR	1.000	1.000	1.000			
CLARKE	0.397	0.452	0.450			
		human-A54	9-METTL3-			
	SRR1182615	SRR1182617	SRR1182629			
ISOpureR	1.000	1.000	1.000			
CLARKE	0.464	0.540	0.375			
	human-A549-METTL14-					
	SRR1182607	SRR1182609	SRR1182611	SRR1182613		
ISOpureR	1.000	1.000	1.000	1.000		
CLARKE	0.445	0.461	0.430	0.386		

Table: Results of Real Datasets

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 66 / 75

Ξ.

Results of real data

Method	human-A549-METTL14-					
	SRR1182607	SRR1182609	SRR1182611	SRR1182613		
ISOpureR	1.000	1.000	1.000	1.000		
CLARKE	0.445	0.461	0.430	0.386		
		human-H	1ESC-T48			
		SRR1035218	SRR1035220			
ISOpureR		1.000	1.000			
CLARKE		0.686	0.698			
	human-hESC-C					
		SRR1035222	SRR1035224			
ISOpureR		1.000	1.000			
CLARKE		0.665	0.619			

Table: Results of Real Datasets (Continued)

Jingxuan Bao (XJTLU)

FYP Presentation

э May 7, 2019 67 / 75

3 ⊳

Conclusions Conclusions and Contributions

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 68 / 75

Conclusions

ISOpureR

- Small number of gene sites \Rightarrow More accurate;
- Large number of gene sites ⇒ Converge to 1;
- Simple extreme dataset \Rightarrow Inaccurate.

CLARKE

- Small number of gene sites \Rightarrow Underestimated;
- Large number of gene sites ⇒ More accurate;
- Simple extreme dataset \Rightarrow Chaos.

Original Work

- Estimation by comparison;
- Approximation of first derivative;
- Calculation of curvature;
- Results analysis.

-

Reference

Jingxuan Bao (XJTLU)

FYP Presentation

May 7, 2019 71 / 75

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

э

References I

- Bertrand Clarke, Jennifer Clarke, and Pearl Seo. Statistical expression deconvolution from mixed tissue samples. *Bioinformatics*, 26(8): 1043–1049, 03 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/btq097. URL https://doi.org/10.1093/bioinformatics/btq097.
- Qi Cui, Hailing Shi, Peng Ye, Li Li, Qiuhao Qu, Guoqiang Sun, Guihua Sun, Zhike Lu, Yue Huang, Cai-Guang Yang, Arthur D. Riggs, Chuan He, and Yanhong Shi. m 6 a rna methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. *Cell Reports*, 18: 2622–2634, 03 2017. doi: 10.1016/j.celrep.2017.02.059.
- Dan Dominissini, Sharon Moshitch-Moshkovitz, Mali Salmon-Divon, Ninette Amariglio, and Gideon Rechavi. Transcriptome-wide mapping of n6-methyladenosine by m 6a-seq based on immunocapturing and massively parallel sequencing. *Nature protocols*, 8:176–89, 01 2013. doi: 10.1038/nprot.2012.148.
References II

- Mark Gosink, Howard Petrie, and Nicholas Tsinoremas. Electronically subtracting expression patterns from a mixed cell population. *Bioinformatics (Oxford, England)*, 23:3328–34, 01 2008. doi: 10.1093/bioinformatics/btm508.
- Mark M. Gosink, Howard T. Petrie, and Nicholas F. Tsinoremas. Electronically subtracting expression patterns from a mixed cell population. *Bioinformatics*, 23(24):3328–3334, 10 2007. ISSN 1367-4803. doi: 10.1093/bioinformatics/btm508. URL https://doi.org/10.1093/bioinformatics/btm508.
- Selva Prabhakaran. *Assumptions of Linear Regression*. r-statistics.co, 2016. doi:
 - http://r-statistics.co/Assumptions-of-Linear-Regression.html.

イロト イポト イヨト イヨト

References III

- Gerald Quon, Syed Haider, Amit Deshwar, Ang Cui, Paul C Boutros, and Quaid Morris. Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. *Genome medicine*, 5:29, 03 2013. doi: 10.1186/gm433.
- Ian Roundtree, Molly Evans, Tao Pan, and Chuan He. Dynamic rna modifications in gene expression regulation. *Cell*, 169:1187–1200, 06 2017. doi: 10.1016/j.cell.2017.05.045.

< ロ > < 同 > < 三 > < 三

Q & A

Jingxuan Bao (XJTLU)

FYP Presentation

- 2 May 7, 2019 75 / 75

・ロト ・四ト ・ヨト ・ヨト