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Abstract

In this project, we are aiming to analyse the RNA methylation sites in a given
set of genes in which the two main tasks are RNA methylation site detection and
differential methylation analysis. To achieve these goals, the true proportion of
m6A specific binding mRNA in the m6A-containing sample, IP sample, is needed.

To estimate the true proportion of the m6A specific binding mRNA, we make
an comparison between the problem of deconvolution of the tumour samples with
respect to the normal samples and the problem of deconvolution of the IP samples
in terms of the input samples. In this research, we examine two methods, ISOpureR
and CLARKE respectively. After reviewing the necessary preliminary knowledge of
biology and mathematics, we introduced the basic ideas and algorithms of these two
method. Generally speaking, ISOpureR focuses on using statistical method whilst
the CLARKE concentrates on the mathematical method. In particular, ISOpureR
estimate the true proportion by maximising the complete likelihood function with
the application of flexible preconditioned conjugate gradient method; CLARKE
completes the task by the method of principal components analysis combined with
the knowledge in the differential geometry and numerical analysis.

Furthermore, after introducing the rationale and algorithm of both methods, we
apply simulated data and real data to assess their performance with the applications
of the knowledge of regression analysis. After analysing, we conclude that with
respect to the ISOpureR method, second order median regression model performs
more efficiently; and with respect to the CLARKE method, median regression
model is regarded to be more suitable than the linear regression model.

Regression analysis such as lack-of-fit test, diagnostic test, and F-test are performed
to examine the suitability of the regression models. In conclusion, the ISOpureR
method is more stable and more efficient when the data has a relatively small num-
ber of gene sites. For CLARKE method, although it is able to obtain stable results
when applied to the data with a small number of gene sites, the efficiency of esti-
mation is worse than the ISOpureR method; however, it has a better performance
when the number of gene sites is relatively large.

keywords: ISOpureR, CLARKE, RNA sequencing, linear regression, quadratic poly-
nomial regression, median regression, significance test, diagnostic test, lack-of-fit
test.
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1 Introduction

RNA sequencing (RNA-Seq), also known as whole transcriptome shotgun sequencing
(Morin et al., 2008), is a common method to detect the differences in gene expression
in different samples, treatments, as well as different cell populations and experimental
conditions (Maher et al., 2009). With the sequencing data, bio-statisticians may carry out
more accurate predictions of the RNA methylation sites and differential RNA methylation
analysis.

Usually, the prediction of RNA methylation sites is made possible using peak calling
(Meng et al., 2017), a computational method applied to identify areas in a genome with
aligned reads enrichment after performing a ChIP-sequencing or MeDIP-seq experiment.
Moreover, with the improvement of high throughput sequencing data, differential RNA
methylation analysis is now available with the help of RNA methylation experiments.
Nowadays, N6-methyladenosine (m6A), an abundant modification in mRNA that is found
within some viruses (Beemon and Keith, 1977; Aloni et al., 1979) as well as most eukary-
otes (Desrosiers et al., 1974; Perry et al., 1975), becomes increasingly important in various
biological processes, such as RNA degradation, cocaine addiction, RNA-protein interac-
tion (Meyer and Jaffrey, 2014).

1.1 Background Information and Previous Work

In this project, there are two main goals to be accomplished, namely, RNA methylation
site detection and differential methylation analysis. To achieve these two goals, we need to
estimate the real proportion of m6A specific binding mRNA fragments of m6A-containing
sample (IP sample) from the untreated sample (input sample) (see Section 2.1.1 for
details). However, the proportion of m6A specific binding mRNA fragments is not known
accurately due to the biological noise in the experiments (Wang et al., 2015).

In this paper, in order to be integrated with studies on RNA methylation site detec-
tion and differential methylation analysis, two methods of m6A specific binding mRNA
fragments proportion estimation in the IP sample are introduced and improved upon.
These two methods are called ISOpureR and CLARKE, using totally different ideas in
mathematics to achieve the same purpose in biology.

In the following part of this report, we mainly focus on the two methods. In section 2,
literature review, we shall review these two methods and some biological and mathemat-
ical knowledge that we applied in our report. In section 3, methodology, methods are
illustrated in detail. In section 4, results and discussion, we present the results by apply-
ing the data generated to test the stability and accuracy of these methods. We compare
the two methods and applied both of them into our real data to work out the absolute
value of proportion to further complete the task of differential methylation analysis.

1.2 Original Work

Overall, our work is novel in the following way:
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• We apply the basic idea of computing the value of proportion by comparison. In
this project, we compare estimating the proportion of m6A specific binding mRNA
in the IP sample given the condition of input sample, with the proportion of cancer
cells in the tumour sample given the condition of normal sample. We are able
to solve these two problems with the same method because both data share some
common features. For example, both data are biological data, which implies we
have to handle with the biological noise; both tasks are to estimate the proportion
of one pure sample in the contaminated sample.

• we have improved the algorithm of derivative calculation in CLARKE method.
When they calculating the first derivative, they applied two-point method to ap-
proximate it, which may lead to the results not accurate enough. In our project,
we have applied the method of Five-Point Midpoint Formula to reduce the error of
approximation. In this way, we have improved the accuracy of the approximation
of the first derivative.

• The CLARKE method applied the definition to calculate the curvature, in which we
need to reparametrise the curve into unit-speed curve, and then calculate the second
derivative with the application of the definition equation. However, in our improved
model, we simplify the procedure by using the proposition of the curvature, where
rather than reparametrising the curve into unit-speed, we just need to find the
derivatives of the parametrised curve and use the obtained derivatives to calculate
the proposition equation. In this way, the method would become more efficient in
terms of time.

• We compared the ISOpureR method and CLARKE method statistically in terms of
all kinds of criteria. In our project, We apply significant test to check whether the
regression model can describe the data well; we use the diagnostic test to examine
whether the residuals, or errors, are follows the assumptions of the regression model;
we study if the linear regression model adequately fits the data by application of
lack-of-fit test. Moreover, we apply the higher order polynomial regression and
check its availability when the lack-of-fit test fails.

2 Literature Review

This research project is related to both fields of bioinformatics and mathematics. In
this section, some important aspects of background knowledge pertaining to biology and
mathematics shall be discussed separately in the following sections.

In the next two subsections, biological and mathematical background, each marked sub-
title written in bold characters is referred to the name of the related article or book,
followed by the main knowledge applied in this project.

2.1 Background of Biology

In this subsection, we shall introduce the biological background of our project, including
the overall procedure of RNA sequencing (RNA-Seq), the brief introduction raw data,
the two biological methods of analysis, and biological significance of our project.
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2.1.1 Introduction to Differential Gene Expression Analysis Using RNA-seq

RNA sequencing was firstly invented to detect the expression of the genomic loci in a cell
at a certain period of time over the entire expression range. Later, due to the lifting the
restriction of RNA-Seq, independent of expression transcripts counting of known genes,
numerous additional application were raised. Among its applications, the detection of
gene expression changes between cell populations and experimental conditions is widely
used.

According to this article, there are a total of 3 stages to obtain the data we used:

• RNA Extraction: First, from a given sample of cells, we use viral, enzymic, or
osmotic mechanisms to break down the membrane of a cell to obtain lysed cells for
RNA extraction. Next, particular methods such as silica-gel based membrane or
the most prevalent methods, liquid-liquid extractions with acidic phenol-chloroform,
are used to extract RNA from the lysed cells. After this step, the objects obtained
consists mainly of four types of RNA, i.e., the rRNA, tRNA, snRNA, and mRNA.
Among all these types of RNA, mRNA will be selected and used to be analysed.
(See Figure 1)

• Library Preparation: Library refers to, in biological science, a (perfectly random)
collection of DNA fragments that are ready for sequencing with a specific protocol.
After extracting mRNA, step of mRNA fragmentation is necessary for sequencing
as some of mRNA is too long to be sequenced. An average length of 100 base
pairs to 300 base pairs (100bp to 300bp) mRNA fragments will be obtained after
fragmentation and they will be converted to cDNA to construct a cDNA library
waiting for sequencing. (See Figure 1)

• Alignment: With the completion of the Human Genome Project, the identification
of sequence of human DNA nucleotide base pairs has been completed in 2003, which
allows us to align our mRNA sequencing data to the genome to provide us the
information about the positions of mRNA fragments in the whole human genome.
(See Figure 2)

After these steps, the number of times of a certain gene that is aligned with mRNA
fragments would be available, named reads count, which is the data used in this project.

2.1.2 ISOpureR: Computational Purification of Individual Tumour Gene Ex-
pression Profiles Leads to Significant Improvements in Prognostic Pre-
diction

Quon et al. (2013) has described a computational purification tool named ISOpureR.
Given the tumour cell sample and normal (healthy) cell sample, ISOpureR is able to
estimate the proportion of RNA originating from cancer cells, and generate a purified
cancer profile for each tumour sample.

ISOpureR employs two main regularisation strategies:

• The first strategy is that, the model assumes that each normal (healthy) profile
can be represented by a weighted combination of available healthy tissue profiles.
With this assumption, ISOpureR can easily handle the case when tumour data and
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Figure 1: Library Preparation
(Dündar et al., 2015)

Figure 2: Schema of m6A-Seq Protocol
(Dominissini et al., 2013)

normal data are not matched. Moreover, this model also assumes that both tumour
samples and normal samples satisfy Dirichlet distribution.

• The second strategy is that, the model use a two-step approach to maximise the
complete likelihood function. The Polack-Ribiere flavour of conjugate gradients
Rasmussen and Williams (2006) is used to search directions; and a line search using
quadratic and cubic polynomial approximations and the Wolfe-Powell stopping cri-
teria (Sun and Yuan, 2006) is used together with the slope ratio method for guessing
initial step sizes.

After these two steps, the actual proportion of cancer cells in the tumour samples can be
estimated. Followed by this way, we have done an analogy and improvement to our data
so that we were able to predict the actual proportion of m6A specific binding mRNA in
the IP sample.

2.1.3 CLARKE: Statistical Expression Deconvolution from Mixed Tissue
Samples

In this method, a totally different method of expression deconvolution from mixed tissue
samples is discussed, where the proportion of some component cell type remains unknown.

The idea of CLARKE method is described as following: it finds the minimum ratio of
mixed sample gene expression and one of the pure sample expression; and calculate the
proportion of the pure sample by letting the gene expression of the other pure sample
approaching to 0 (Gosink et al., 2008). However, following this idea, the method is likely
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to be an underestimate of the true proportion value for both simulated noisy data and
observed data. Clarke et al. (2010) have improved this method by transforming the data
so that the mean and median of the samples approaching closer together. By plotting
the curve of mean and median, applying the method of principal components analysis
(Jolliffe, 2002), the author concluded the ‘knee’ or ‘elbow’ of the curve give us the most
accurate estimation.

2.2 Background of Mathematics

In this subsection, the main knowledge applied to derive the two methods is reviewed.
The first two parts of this subsection introduce the knowledge used to derive the method
of ISOpureR, and the third part of the subsection is the one for CLARKE.

2.2.1 Statistical Inference

In this book, Casella and Berger (1990) introduce the main topics of statistical science,
basics of probability theory, transition between probability and statistics, three statisti-
cal principles (sufficiency, likelihood, and invariance), estimation and hypothesis testing.
However, in our project, a very small part of these topics are covered such as sampling,
Bayes estimators, hypothesis testing.

Here follows the mean concepts and theorems that are used in our project:

• The Likelihood Function

Let f(x|θ) denote the joint probability density function (pdf) or probability mass
function (pmf) of the sample X = (X1, X2, · · · , Xn). Then, given that X = x is
observed, the function of θ defined by

L(θ|x) = f(x|θ) (2.2.1)

is called the likelihood function.

According to the definition of the likelihood function, it seems that we define the
likelihood function to be almost the same as pdf or pmf. The only distinction
between these two functions is the difference of the fixed value and the varying
value. In the pdf or pmf, the fixed value is parameter θ and the varying value
is x, whilst in the likelihood function, we consider x as the fixed value and θ is
the variable. In other words, when we consider the likelihood function L(θ|x), we
regard x to be the observed sample point and θ to be varying over all possible
parameter values.

Moreover, in our project, we use the discrete random vector to describe our data.
In this case, if we compare two likelihood function L(θ1|x) and L(θ2|x) with the
relation

L(θ1|x) > L(θ2|x), (2.2.2)

then the sample we actually observed is more likely to have occurred when θ = θ1
than when θ = θ2. This is the main information provided by the likelihood function.
We use this knowledge to estimate the parameters in the ISOpureR method (see
Equation 3.1.10).
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• Maximum Likelihood Estimators

For each sample point x, let θ̂(x) be a parameter value at which L(θ|x) attains its
maximum as a function of θ, with x held fixed. A maximum likelihood estimator
(MLE) of the parameter θ based on a sample X is θ̂(X).

The MLE is a reasonable choice for an estimator because the MLE is the parameter
point which would obtain the most likely observed sample. In such a case, all we
need to do is to find the stable (stable with respect to the small change in the
data) global maximum of the MLE; and hence the most suitable estimator could
be chosen.

2.2.2 The Flexible Preconditioned Conjugate Gradient Method

The conjugate gradient method, in mathematics, is an algorithm for the numerical so-
lution of particular systems with symmetric and positive-definite matrix. The conjugate
gradient method is often implemented as an iterative algorithm, applicable to large sparse
systems.

In the following part of the illustration, all bold symbols refer to a vector or a matrix.
Given the system of equations

Ax = b (2.2.3)

for the vector x and b, and n× n symmetric, positive-definite, real matrix A.

We initially guess x0 = 0, considering the system Az = b −Ax0. Assume the solution
of the system is x∗. From x0, we begin search for the solution and in each iteration, we
need a metric to tell us whether our approximation are closer to the solution x∗, which
is the unique minimiser of the function

f(x) =
1

2
xTAx− xTb (2.2.4)

Next, from the uniqueness of the minimiser, we have that its second derivative is a
symmetric positive-definite matrix

∇2f(x) = A, (2.2.5)

Then the minimiser solves the initial problems is from its first derivative

∇f(x) = Ax− b. (2.2.6)

From the previous equation, we have the first bases vector p0 to be the negative of the
gradient of f , which is Ax− b. We take p0 = b−Ax0.

Next, we denote the rk to be the residual at the kth step,

rk − b−Axk. (2.2.7)

We require that the next direction search step to be built upon the current residual and
all previous search directions, which gives us the expression

pk = rk −
∑
i<k

pTi Ark

pTi Api
pi (2.2.8)
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From this direction, the next optimal location is

xk+1 = xk + αkpk (2.2.9)

where

αk =
pTk (b−Axk)

pTkApk
=

pTk rk

pTkApk
(2.2.10)

where the last equality follows from the definition of rk. The expression for αk is derived
if one substitutes the expression for xk+1 into f and minimising it with respect to αk,

f(xk+1) = f(xk + αkpk) = g(αk) (2.2.11)

and

g′(αk) = 0⇒ αk =
pTk (b−Axk)

pTkApk
(2.2.12)

As Notay (2000) stated, the flexible preconditioned conjugate gradient method converges
faster than the ordinary conjugate gradient method. Moreover, Polak-Ribière formula
is applied here to improve the convergence dramatically. In our project, we apply the
method to minimise the likelihood function (see Section 3.1, CPE and TPE).

2.2.3 Bayesian Data Analysis

This book, as Gelman et al. (2003) stated, is an introductory text on Bayesian inference,
a graduate text on effective current approaches to Bayesian modelling, and a handbook
of Bayesian methods in applied statistics. A wide range of the knowledge related to
Bayesian statistics is introduced but in this project, we mainly focus on the introduction
of the multinomial distribution and the Dirichlet distribution.

• Multinomial Distribution

The multinomial distribution is a generalisation of binomial distribution, which
allows more than two possible outcomes. The multinomial sampling distribution is
applied to describe data where every observation is one of K possible outcomes.

The probability mass function of the multinomial distribution is

Multinomial(γ | π) =
(
∑K

k=1 γk)!∏K
k=1 γk!

K∏
k=1

πγkk (2.2.13)

where the ‘bold’ letter represents a vector or matrix, and the ‘unbold’ letter implies
a scalar; π refers the parameter vector and γ can be seen as the state vector of the
random variable. We use Multinomial distribution to describe the tumour profiles
in the ISOpureR method (see Section 3.1, xn)

• Dirichlet Distribution

The Dirichlet distribution is the conjugate prior distribution of the parameters of
a multivariate generalisation of the beta distribution.
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The probability mass function of the Dirichlet distribution is

Dirichlet(x | a) =
Γ(
∑K

k=1 ak)∏K
k=1 Γ(ak)

K∏
k=1

xak−1k (2.2.14)

where the ‘bold’ letter represents a vector or matrix, and the ‘unbold’ letter implies
a scalar; a refers the parameter vector and x can be seen as the state vector of the
random variable. We use the Dirichlet distribution to describe the parameters and
the cancer profiles in the ISOpureR method (see Section 3.1, θn, cn,m).

2.2.4 Elementary Differential Geometry

In this book, Pressley (2010) introduced the curves and surfaces and applied the knowl-
edge of algebra to solve questions in geometry.

We have used basically the knowledge about the curvature of a curve, which would be
illustrated in below:

• Reparametrization

A parametrized curve γ̃ : (α̃, β̃) → Rn is a reparametrization of a parametrized
curve γ : (α, β) → Rn if there is a smooth bijective map φ : (α̃, β̃) → (α, β) (the
reparametrization map) such that the inverse map φ−1 : (α, β) → (α̃, β̃) is also
smooth and

γ̃(t̃) = γ(φ(t̃)) for all t̃ ∈ (α̃, β̃) (2.2.15)

Reparametrization of a curve is using different equations to represent the same
curve. The reason why we do reparametrization is that sometimes we need to
find a proper way to express a curve so that we are able to simplify the calcula-
tion related the curve. In our project, when studying CLARKE method, we need
to reparametrize the curve as unit-speed curve (the Euclidean norm of the first
derivative of the curve is equal to 1), so that we can find the curvature of the curve
by applying the definition (see Section 3.2), which will be discussed in the next
part.

• Curvature

If γ is a unit-speed curve with parameter t, its curvature κ(t) at the point γ(t) is
defined to be || γ̈(t) ||.

The geometric meaning of curvature is to measure how curved of the curve. If a
curve with a larger curvature than the other one at some point, then we say that
the curvature is more curved than the other curve at this point. Moreover, the
‘elbow’ or ‘knee’ of a curve at some point is the reciprocal of the curvature of the
curve at this point. We calculate the curvature in the original CLARKE method
by this definition (see Section 3.2, Model Formulation).

Let γ(t) be a (not necessarily unit-speed) parametrised curve in R3. Then its cur-
vature is

κ(t) =
||γ′ × γ′′||
||γ′||3

. (2.2.16)
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Without doing unit-speed reparametrisation, this proposition may simplify the pro-
cedure of calculating the curvature of a curve. We improve the calculation of the
curvature in the CLARKE method by this proposition (see Section 3.2, Model
Improvement).

2.2.5 Understanding Analysis

We mainly focus on the Inverse Function Theorem in the book ‘Understanding Analysis’
and latter, we are going to apply this theorem to prove the existence of the inverse
function of arc length (see Equation 3.2.9).

For functions of a single variable, the theorem states that if f is a continuously differ-
entiable function with nonzero derivative at the point a, then f is invertible in a neigh-
bourhood of a, the inverse is continuously differentiable, and the derivative of the inverse
function at b = f(a) is the reciprocal of the derivative of f at a:

(f−1)′(b) =
1

f ′(a)
. (2.2.17)

We need to use the theorem to prove the existence and the uniqueness of the inverse
function of the arc-length reparametrisation of the curve to convert the parametrised
curve into unit-speed curve (see Equation 3.2.9).

2.2.6 Numerical Analysis

In the book ‘Numerical Analysis’, we review the knowledge about numerical differentia-
tion. Moreover, the Five-Point Midpoint Formula will be examined and applied in our
CLARKE method (see Section 3.2, Model Improvement).

For a certain partition, given that h is the fixed difference between two consecutive points.
The first derivative of the function f(x) at the point x0 can be described by

f(x0)
′ =

f(x0 − 2h)− 8 f(x0 − h) + 8 f(x0 + h)− f(x0 + 2h)

12h
+
h4

30
f (5)(ξ) (2.2.18)

where ξ lies between x0 − 2h and x0 + 2h (Burden et al., 2016).

2.2.7 Quantile Regression

Quantile functions of a sample is defined by

Q(τ |x) = β0 + β1x+ F−1u (τ) (2.2.19)

where Fu denotes the common distribution function of the errors; and F (x) = P (X ≤ x),
while for any 0 < τ < 1, we have

F−1(τ) = inf{x : F (x) ≥ τ}, (2.2.20)

called the τ th quantile of X (Koenker, 2005).
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Here, additionally, according to Koenker (2005), quantile regression does not make dis-
tributional assumptions. In other words, the assumptions about residuals, other than
assuming that the response variable is almost continuous. We apply median regression,
the quantile regression with τ = 0.5, to both ISOpureR method and CLARKE method
(see Section 4.1.2, Median Regression for ISOpureR Method and Analysis, Second Order
Median Regression Model for ISOpureR Method, and Median Regression for CLARKE
Method and Analysis).

3 Methodology

In this section, both of the statistical model and the mathematical model, ISOpureR and
CLARKE, will be discussed and applied to calculate the true proportion of mRNA that
is extracted specifically by m6A.

3.1 ISOpureR

In this part, the full ISOpureR model is defined as follows (note that all the bold symbol
represents a vector or a matrix):

Assumptions:

• Vector of normal profile hn is similar to one or more profiles of normal tissue that
are input into the algorithm.

• hn is a convex combination of the normal profiles provided to the algorithm.

• The cancer profiles c1, c2, ..., cN in the cohort are clustered together around a
‘reference cancer profile’ m.

• Profiles of cancerous tissue are similar (but not identical) to those of the tissue of
origin of the tumour type.

Parameters Definition:

From the definition (see Table 1), by Quon et al. (2013) we originally have relation
between tumour samples and normal samples shown in the following equations:

tn = αncn + (1− αn)hn + en (3.1.1)

= αncn +
R∑
r=1

θn,rbr + en (3.1.2)

where en represents the error, αn represents the proportion of cancer cells in the tumour
cells. Here, we use the assumption that hn is a convex combination of the normal profiles
provided to the algorithm.

Data Transformation:

The reason why ISOpureR method needs the data to be transformed is that, in the tumour
profiles, the sum of the elements in each of the discretized profiles after robust multi-array
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Name Definition Remark
tn Tumour profiles Input data;

Vectors with G elements and n = 1, 2, · · · , N .
bn Healthy profiles Input data;

Required that R < N .
hn Vector of normal profile Each normal profile can be represented by a weighted

combination of the available healthy tissue profiles
b1, b2, · · · , bR.

cn The cancer profiles Profiles c1, c2, · · · , cn in the cohort are clustered to-
gether around a ‘reference cancer profile’ m.

m Reference cancer profile Estimated from the tumour profile data;
Has a regularisation applied to it to bias its estimate
toward values that are close to the normal profiles.

kn The strength parameter The strength parameter of the Dirichlet distribution
over cn given m (n = 1 , 2 , 3 , ... , N).

k′ The strength parameter The strength parameter of the Dirichlet distribution
over m.

ω Weights The weights on the normal profiles br used to make
the weighted combination that forms the mean pa-
rameter vector for the Dirichlet distribution over m.

v Mean and strength Represents both the mean and strength of a Dirichlet
distribution over θn.

xn Discretized tumour pro-
files

A count vector derived from discretization of tn.

x̂ Normalised reconstruc-
tion of the tumour
profile

The probability of the discretized tumour profiles un-
der the multinomial distribution, a normalised recon-
struction of the tumour profile xn based on the model
parameters.

en Error

Table 1: Notation

average (RMA) normalisation should be on the order of 107. To ensure adequate precision
in the discretization, if their sum is much less than 107, profiles may need to be rescaled.

The discretisation of the tumour profiles tn is to round each element of tn to the nearest
non-negative integer to obtain our transformed tumour profiles x̂n. Discretisation allow
us to rescale the tumour profiles so that the total number of observations (the sum of the
elements) after discretization is approximately the same across all tumour profiles, and
to balance the influence that each tumour profile has on the shared parameters.

In order to allow br to be interpreted as a discrete probability distribution over transcripts,
we divide each normal profile br by the sum of its elements.

After discretization, Equation 3.1.2 becomes

x̂n = αncn +
R∑
r=1

θn,rbr (3.1.3)
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Till now, all we have to do is to figure out the scalar, or say, the true proportion of cancer
cells in the tumour sample, which is αn.

Model Formulation:

We now formulate our model to solve the absolute proportion of the cancer cells in the
tumour sample. Generally speaking, in this model, we use the method of maximising
the complete likelihood function to find the most proper estimator, and in each step,
we use the flexible preconditioned conjugate gradient method with iteration to find the
maximum likelihood function. The details of the method are displayed in the following
part of this section (note that all the bold symbol represents a vector or a matrix):

First of all, we define our symbol as follows (see Table 2):

Symbol Definition
B = [b1 b2 ... bR]
θn = [θn,1 θn,2 ... θn,R αn]
x̂n = [B cn] θn = [b1 b2 ... cn] θn

= θn,1b1 + θn,2b2 + ...+ θn,RbR + αncn
p (θn | v) = Dirichlet (θn | v)
p (xn | B,θn, cn) = Multinomial (xn | x̂n)
p (cn | kn,m) = Dirichlet (cn | knm)
p (m | k′,B,ω) = Dirichlet (m | k′Bω)

Table 2: Notation

Estimate all the parameters θn, αn, cn, v, m, kw, k′, and ω, applying two-step approach
to maximise the complete likelihood function with the flexible preconditioned conjugate
gradient method:

L = p(m | k′,B,ω)
N∏
n=1

p(cn | kn,m)p(θn | v)p(xn | B,θn, cn) (3.1.4)

Now, step-by-step illustration of ISOpureR method is displayed in the following part of
this section. From Step 1 to Step 4, the purpose of algorithm is to initialise the parameters
and we denote these steps as initialisation step; from Step 5 to Step 10, the algorithm
is aimed at eliciting the actual cancer profiles, and these steps are denoted as cancer
profile estimation step; from Step 11 to Step 15, we are trying to estimat the proportion
of tumour profiles, and we denote these steps as tumour profile estimation step.

• Initialisation Step:

Step 1: Denote D as the number of tumour samples ; K as the number of cancer
profiles, which is equal to the number of normal profiles + 1 (+1 is for the reference
cancer profile m). Let cn is equal to m (that is, we set kn = k′ =∞ for all n).

Step 2: Let v be a K×1 vector, which is generated randomly with the last element
having the most weighted proportion.

Step 3: Initialise the D×K matrix θn and distribute a higher weight to the cancer
component.

15



Step 4: Initialise (K − 1)× 1 vector ω.

• Cancer Profile Estimation Step (CPE):

In the following steps, the method to find the minimum of log-likelihood func-
tion (see Section 2.2.1 for details) is the flexible preconditioned conjugate gradient
method (see Section 2.2.2 for details).

Step 5: To optimise m, we first generating a G × K parameter matrix with the
first K − 1 columns being the logarithm of the normal profiles log(bn) and the last
column to be log(ω1b1+ω2b2+ ...+ωK−1bK−1). Then we initialise the G×1 vector
m such that m = log(ω1b1 + ω2b2 + ... + ωK−1bK−1). Finally, we minimise the
log-likelihood function

−log p(m | k′,B,ω)−
N∑
n=1

log p(xn | B,θn,m) (3.1.5)

with respect to m to find the most proper parameter m. Where xn is the nth

tumour profile with 1 ≤ n ≤ D and K − 1 ≤ D.

Step 6: optimise θn for all n, we minimise the log-likelihood function

−log p(θn | v)− log p(xn | B,θn,m) (3.1.6)

with respect to θn.

Step 7: To optimise v, we minimise the log-likelihood function

−
N∑
n=1

log p(θn | v) (3.1.7)

with respect to v.

Step 8:To optimise k′, we minimise the function

−log p(m | k′,B,ω) (3.1.8)

with respect to k′.

Step 9: To optimise ω, we minimise the function

−log p(m | k′,B,ω) (3.1.9)

with respect to ω.

Step 10: We run Step 5 to Step 9 at least 35 iterations, and check if the change in
log likelihood,

L = p (m | k′,B,ω)
N∏
n=1

p(θn | v)p(xn | B,θn,m) (3.1.10)

is smaller than a threshold (the change in log-likelihood function is 10−7 or iterations
is up to 100 times).
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• Tumour Profile Estimation Step (TPE):

In the following steps, the method to find the minimum of log-likelihood function
is still the flexible preconditioned conjugate gradient method (please refer Section
2.2.2 for details).

Step 11: To optimise cn for all 1 ≤ n ≤ N , we minimise the function

−log p(cn | kn,m)− log p(xn | B,θn, cn) (3.1.11)

with respect to cn.

Step 12: To optimise θn for all 1 ≤ n ≤ N , we minimise the function

−log p(θn | v)− log p(xn | B,θn, cn) (3.1.12)

with respect to θn.

Step 13: To optimise v, we minimise the function

−
N∑
n=1

log p(θn | v) (3.1.13)

with respect to v.

Step 14: To optimise k, we minimise the function

−
N∑
n=1

log p(cn | kn,m) (3.1.14)

with respect to k.

Step 15: We run Step 11 to Step 14 at least 35 iterations, and check if the change
in complete log likelihood,

L =
N∏
n=1

p(cn | kn,m)p(θn | v)p(xn | B,θn, cn) (3.1.15)

is smaller than a threshold (the change in log-likelihood is 10−7 or iterations is up
to 100 times).

After all these steps, we are able to estimate the true proportion of the cancer cells in
the tumour samples as well as the actual value of each component of the cancer profiles.
Moreover, in our project, we just need to replace the tumour samples by IP samples
and replace the normal samples (healthy samples) by input sample to achieve our goal,
estimation of true proportion ofm6A binding mRNA in the contaminated mRNA samples.

3.2 CLARKE

In this method, we apply data transformation and plot the graph of mean and median
of the ratio of gene expression with respect to the transformed data. After plotting the
graph, we use the method of principal components analysis (Jolliffe, 2002) to conclude
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the ‘elbow’, or say, the ‘knee’ of the curve implies the best estimation of the true value
of mixing proportion.

Parameters Definition:

Note that all the bold symbols refer to a vector or a matrix. All the parameters we used
in this model are shown in the Table 3.

Name Definition Remark

A Pure profile A

B Pure profile B

AB Mixed profile

E(A) Gene expression of pure

sample A

Input data (if available);

E(A) = (E1(A), E2(A), · · · , Em(A)).

E(B) Gene expression of pure

sample B

Input data (if available);

E(B) = (E1(B), E2(B), · · · , Em(B)).

E(AB) Gene expression of mixed

sample

Input data (if available);

E(AB) = (E1(AB), E2(AB), · · · , Em(AB)).

tEi(A) Transformed value of the ith

gene expression

tEi(A) = log(1 + αEi(A))

tEi(AB) Transformed value of the ith

gene expression

tEi(AB) = log(1 + αEi(AB))

α Intermediate parameter Each value of α provides an accurate value

of pA under the situation of each dataset.

R Ratio of gene expression R = (R1, R2, · · · , Rm);

Ri = Ei(AB)
Ei(A)

tRi The transformed value of

gene expression ratio

tRi is a function of α;

i = 1, 2, · · · ,m.

tRi The mean value of tRi i = 1, 2, · · · ,m.

pA The true proportion of pro-

file A in profile AB

Ei(AB) = pAEi(A) + (1− pA)Ei(B) + ε;

i = 1, 2, · · · ,m.

ε Error

Table 3: Notation

Original Model:

This model has been raised by Gosink et al. (2007), that given the mixed sample AB,
one of the pure sample A, we want to estimate the proportion of sample A in the mixed
sample AB, which is pA in the following equation

Ei(AB) = pAEi(A) + (1− pA)Ei(B) + ε. (3.2.1)

Let Ri = Ei(AB)
Ei(A)

. In the noiseless case, we have

Ri = pA
Ei(A)

Ei(A)
+ (1− pA)

Ei(B)

Ei(A)
. (3.2.2)

18



Since the expression value is assumed to be non-negative, we have

lim
Ei(B)→0

Ri = pA + (1− pA)
Ei(B)

Ei(A)
= pA. (3.2.3)

Therefore, under the assumption that Ei(B) → 0, we have miniRi = pA. However, the
minimum ratio is likely to be underestimated compared with the true proportion. The
problem comes from the noise of the data; and by increasing the small ratio values while
shrinking larger ratio values, we may improve the performance of the estimation (Gosink
et al., 2007).

Data Transformation:

According to Clarke et al. (2010), we first consider transforming both E(AB) and E(A)
into the form

tEi(AB) = log(1 + αEi(AB)) (3.2.4)

tEi(A) = log(1 + αEi(A)) (3.2.5)

for some α > 0 for all i. The reason why we transform the data in such a way is
that, by Clarke et al. (2010), the underestimation of the minimum ratio compared to the
true proportion value is caused by the noise in the observed expression data from mixed
samples. After transformation, we are able to reduce the difference between the mean
and the median, so that the small ratio value could increase while the larger ratio value
could decrease.

Model Formulation:

Given that the minimum value of tRi is sensitive to the noise in the data, and in particular,
to the mean and the median, we apply the information from the mean and median of the
tRi as a function of α to estimate minitRi, and hence the true proportion. The mean of
tRi as a function of α is defined as

tRi(α) =
1

m

m∑
i=1

[ log(1 + αEi(AB))

log(1 + αEi(A))

]
(3.2.6)

The value of α plotted on the graph of the function is shown in Figure 3 and Figure 4.

We observe the graphs and apply principal components analysis to conclude that the
point gives the minimum ratio, or say, the most accurate proportion, is located at the
‘knee’ or ‘elbow’ of the curve (the red points in the Figure 3 and Figure 4).

Now, all we need to do is to find the α, which minimise the radius of curvature.

Step 1: Represent tRi(α) as a curve in the plane.

r(α) = (α, tRi(α)) (3.2.7)

for any α1 ≤ α ≤ α2, where α1 and α2 are two real positive numbers.

Step 2: Reparametrise the curve r(α) into unit-speed curve.

Let s(α) be the arc length, defined by

s(α) =

∫ α

α0

√
1 +

(d tR(x)

dx

)2
dx (3.2.8)
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Figure 3: Scree Plot of the Dataset 1
(Clarke et al., 2010)

Figure 4: Scree Plot of the Dataset 2
(Clarke et al., 2010)

The function s(α) is a monotonically increasing function because s(α) models
the length of a curve; and hence by the Inverse Function Theorem (see 2.2.5), we
can express α in term of s, that is

α(s) = s−1(α) (3.2.9)

In such a way, we are able to find the radius of curvature, which is

ρ(s) =
1

||r′′(s)||
(3.2.10)

Step 3: Implementation

To find the arc length, we need to find the derivative of tRi(α). In our project,
we firstly partition the interval [α1, α2] such that

α1 = β0 < β1 < · · · < βk = α2, βl − βl−1 =
α2 − α1

k

for l = 1, 2, · · · , k. Then we can obtain the arc length of the curve,

s(βj) =

∫ βj

β0

√
1 +

(d tR(x)

dx

)2
dx =

1

βl − βl−1

j∑
l=1

√
1 + (tRi(βl)

′
)2 (3.2.11)

where

tRi(βl)
′
=
tRi(βl)− tRi(βl−1)

βl − βl−1
(3.2.12)

for l, j = 1, 2, · · · , k.

Step 4: Find the minimum of radius of curvature

To find the minimum of the radius of curvature is to find the maximum of the
second derivative of the corresponding curvature

r′′(s) = (0, tRi(s)
′′
) (3.2.13)
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and

||r′′(s)|| =
√

02 + (tRi(s)
′′
)2 = |tRi(s)

′′
| (3.2.14)

where

tRi(sl)
′′

=
tRi(sl+1)− 2tRi(sl) + tRi(sl−1)

(sl − sl−1)2
(3.2.15)

for l = 1, 2, · · · , k − 1.

Once we calculate the minimum of radius of curvature, we are able to find the α, hence
the minitRi. Therefore, we finally estimate the accurate value of proportion of the pure
component A in the mixed sample AB, which, in our project, is the proportion of input
sample in the IP sample.

Model Improvement

In this part, we are going to represent our original work to improve the CLARKE method.
We improve the model by changing the method to calculate curvature so that the two-step
method of finding curvature is simplified into one step. In the original model, (Clarke
et al., 2010) applied the definition of curvature to do calculation. This require us to first
reparametrise the curve into a unit-speed curve. In detail, we need to

• find the parametrisation of the curve;

• calculate the first derivative of the parametrised curve;

• calculate the arc-length function of the curve using the first derivative we calculated;

• apply the Inverse Function Theorem to find the inverse of the arc-length function;

• reparametrise the curve into unit-speed curve;

• calculate the second derivative of the reparametrised curve;

• find the Euclidean norm of the second derivative and find its reciprocal.

Whilst in our improved method, we just need to

• find the parametrisation of the curve;

• calculate the first derivative of the parametrised curve;

• calculate the second derivative of the parametrised curve;

• calculate the cross product of the first derivative and second derivative;

• calculate the Euclidean norm of the cross product and the first derivative;

• apply the proposition equation (Equation 2.2.16).

We simplified the model by reducing the process of finding arc-length function, the inverse
arc-length function, and the unit-speed reparametrisation of the parametrised curve. In
conclusion, we are able to conclude that the efficiency is increased.

Moreover, we also improved the way to calculate the first derivative. We use the Five-
Point Midpoint Formula so that the outcomes of the first derivative is likely to be more
precise. In detail, the Five-Point Midpoint Formula (see Equation 2.2.18) to approxi-
mate the function f(x) has the error term h4

30
f (5)(ξ), where h are the length between a

consecutive pair of points. Whilst the error term of the first derivative formula used by
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Clarke et al. (2010) is h
2
f ′′(ξ). By comparison, h4 gives us a much smaller error than h

because h is in the order 10−1 in our project. Therefore, we are able to conclude that the
accuracy of approximation is improved. However, there is no need for us to increase the
number of points to approximate the first derivative because h4, or say, 10−4 of error is
adequately enough for our project. Although more points of approximation will lead to
a more precise result, it will cost much more time for computer to calculate.

The detailed procedure of improved model is described as follows:

Step 1: Represent tRi(α) as a curve in the plane.

r(α) = (α, tRi(α)) (3.2.16)

for any α1 ≤ α ≤ α2, where α1 and α2 are two real positive numbers.

Step 2: Calculate the first and second derivatives.

To find the derivatives, we firstly partition the interval [α1, α2] such that

α1 = β0 < β1 < · · · < βk = α2, βj − βj−1 =
α2 − α1

k

for j = 1, 2, · · · , k. Then, we apply the Five-Point Midpoint Formula to calculate
the first derivative,

tRi(βj)
′
=
tRi(βj−2)− 8 tRi(βj−1) + 8 tRi(βj+1)− tRi(βj+2)

12 (βj − βj−1)
(3.2.17)

for j = 2, 3, · · · , k − 2. Next, we calculate the second derivative,

tRi(βj)
′′

=
tRi(βj+1)− 2tRi(βj) + tRi(βj−1)

(βj − βj−1)2
(3.2.18)

for j = 1, 2, · · · , k − 1.

Step 3: Find the minimum of radius of curvature

To find the minimum of the radius of curvature, we need to apply the proposition.
Now, we have

r′(α) = (1, tRi(α)
′
) (3.2.19)

r′′(α) = (0, tRi(α)
′′
) (3.2.20)

and next, we just need to apply the equation 2.2.16

κ(α) =
||r(α)′ × r(α)′′||
||r(α)′||3

. (3.2.21)

Though the analysis of the error and the steps of calculation, we may obtain the minimum
of the radius of curvature more accurately and more efficiently.

4 Results and Discussions

In this section, we are supposed to compare the two methods, ISOpureR and CLARKE.
We firstly generate the test data to examine the stability of both methods; then, we study
the statistical characteristics of the results. Finally, we will apply the methods to our
real data with analysis.
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4.1 Simulated Data

In this part, we have simulated two kinds of data to examine our methods. The first kind
of data is simple extreme simulated data, and the other kind of data is simulated data
based on the real data.

4.1.1 Simple Extreme Simulated Data

We have generated a simply and extreme simulated dataset, which contains an input
profile and a pure m6A binding profile. There are totally 500 sites and for input profile,
we set the reads count of the first 250 sites to be 1000 and the rest 250 sites to be 0; for
pure m6A binding profile, we set the reads count of the first 250 sites to be 0 and the rest
250 sites to be 1000.

Next, we apply binomial distribution to generate the IP samples with different mixing
proportions with respect to the input profiles, 10%, 20%, · · · , 90%; and for each propor-
tion, we generate three different samples.

Methods

Purity Purity 10% Purity 20% Purity 30%

Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

ISOpureR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CLARKE −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
Purity 40% Purity 50% Purity 60%

ISOpureR 0.000 0.000 0.000 0.002 0.003 0.000 0.286 0.286 0.286

CLARKE −∞ −∞ −∞ 0.127 0.127 0.127 0.246 0.244 0.244

Purity 70% Purity 80% Purity 90%

ISOpureR 0.575 0.570 0.571 1.000 1.000 1.000 1.000 1.000 1.000

CLARKE 0.175 0.180 0.178 0.121 0.118 0.119 0.056 0.058 0.056

Table 4: Results of Simple Extreme Datasets

where the ‘Purity’ implies the purity we used to generate IP samples (real mixing pro-
portions); the numbers in the table represent the proportion of m6A specific binding
mRNA in the IP samples. From the results, we are able to observe that both methods
are not stable with respect to the extreme cases of dataset. ISOpureR method is likely
to approach 0 or 1, and is not sensitive to the purity which are less than 50%; CLARKE
method is also insensitive to the purity less than a half, and estimate the corresponding
proportion to be −∞. Moreover, the CLARKE method also shows a decreasing tendency
when the real mixing proportion keeps increasing after 60% purity.

4.1.2 Simulated Data Based on the Real Data

To figure out whether the problem is caused by the extreme case of the dataset, we
next test these two methods by applying a more realistic generated dataset. First of all,
we choose to use the dataset gathered from the experiment ‘human-A549-C’; in such a
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set, there are three IP samples and three input samples. Next, to keep the generated
dataset statistically meaningful, we generate the pure m6A binding samples by randomly
permutating the input sample. Then, we randomly choose 500 gene sites to form our new
dataset. Finally, we apply binomial distribution to generate the IP samples with different
mixing proportions with respect to the input profiles, 10%, 20%, · · · , 90% respectively;
and for each proportion, we generate 30 different samples.

Here are the results of two methods, ISOpureR and CLARKE respectively, represented
by two box plots.

Figure 5: Box Plot of ISOpureR Method

From the box plot of ISOpureR method (see Figure 5), we are able to conclude the
ISOpureR method is generally stable. Moreover, the estimated proportion of pure m6A
binding profiles is likely to be larger than the true mixing proportion, where the overesti-
mation tends to be increasingly higher as the proportion of input profile in the IP sample
decreasing.

From the box plot of CLARKE method (see Figure 6), we may conclude that the method
is more likely to be effective when applying to real data instead of extreme data. Al-
though sometimes the outliers may occur, in general, the method is observed to be stable.
However, this method is an underestimation of the true proportion.

To explore more information, we plot the scatter plots of two methods, and do the
Ordinary Least Squares regression to our results (see Figure 7 and Figure 8).

Moreover, we do the regression analysis to our results, the main features are shown as
follows.

• Regression Analysis to ISOpureR

Now, we assume the results gathered from ISOpureR method satisfies the linear
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Figure 6: Box Plot of CLARKE Method

regression model, which is
y = β0 + β1x+ ε (4.1.1)

By doing this, we have assumed that (Prabhakaran, 2016)

– The y-values (or the errors) are independent.

– The y-values can be expressed as a linear function of the x variable.

– Variation of observations around the regression line (the residual SE) is con-
stant (homoscedasticity).

– For given value of x, y values (or the error) are normally distributed.

The fitted model of the method ISOpureR has the coefficients β0 = 1.123112, and

Figure 7: Regression of ISOpureR Methods Figure 8: Regression of CLARKE Methods
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β1 = −1.078470, that is

Purity = 1.123112− 1.078470 ∗ Proportion (4.1.2)

Test of Significance:

By Casella and Berger (1990), we know that when analysing sample data, statisti-
cal inference allows analysts to assess evidence in favour or some claim about the
population from which the sample has been drawn. The methods of inference used
to support or reject claims based on sample data are known as tests of significance,
with the final conclusion once the test has been carried out is always given by the
null hypothesis. Here,

– H0 : the coefficient of the linear regression is equal to 0.

– H1 : the coefficient of the linear regression is not equal to 0.

From the result of regression, the p-value of two coefficients are both less than
2× 10−16 suggesting that there exist very strong evidence against the H0 that the
coefficients of the equation are equal to 0. Furthermore, the adjusted R2 is 0.9952,
which is very closed to 1; and the p-value of linear regression is less than 2.2×10−16.
Both of the two indicators imply that the model fits the data well.

However, a lower p-value and an R2 value that is closed to 1 cannot represent that
the model can adequately describe the data. We need a lack-of-fit test to examine
whether the linear model is suitable for the data or not.

Lack-of-Fit Test:

Next, we present a lack-of-fit test to figure out whether the linear regression model
is a good choice. By Chatterjee et al. (1987), the lack-of-fit test is used in the
numerator to analysis residuals in an analysis of variance in an F-test with the final
conclusion given by the null hypothesis, which is,

– H0: linear model adequately fits data.

– H1: linear model does not adequately fit data.

After using R to applying the lack-of-fit test to the linear model, the results are
shown in the Table 5. The p-value is 2.2× 10−16, which means we have very strong
evidence against the H0. As a results, the linear regression model is concluded to
be unsuitable for describing our data.

Model 1: Purity ∼ Proportion

Model 2: Purity ∼ as.factor(Proportion)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 268 0.100754

2 261 0.039327 7 0.061426 58.237 < 2.2× 10−16

Table 5: R Output of Linear Regression Variance of ISOpureR

Quadratic Polynomial Regression of ISOpureR Method and Analysis
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Now, we assume the results gathered from ISOpureR method satisfies the quadratic
polynomial regression model, which is

y = β0 + β1x+ β2x
2 + ε (4.1.3)

Now, the results obtained from apply quadratic polynomial to ISOpureR method
is shown in Figure 9 with the coefficients β0 = 1.075930, β1 = −0.821117, and
β2 = −0.257353. The fitted equation is

Purity = 1.075930− 0.821117 ∗ Proportion− 0.257353 ∗ Proportion2 (4.1.4)

Figure 9: Quadratic Polynomial Regression of ISOpureR Method

1) Test of Significance to the Quadratic Polynomial Regression Model :

The p-value of all the three coefficients are less than 2× 1016, which, according to
the test of significance, implies that we have very strong evidence against the H0

that the coefficients of the equation are equal to 0. Moreover, the R2 of the model
is 0.9981 implying that the model fits the data very well.

2) Lack-of-Fit Test of the Quadratic Polynomial Regression Model :

In addition, we further do the lack-of-fit test to our new model, and the result of
the test are shown in the Table 6 with the p-value is equal to 0.9577 suggesting we
have no evidence against the H0 that the quadratic polynomial regression model
adequately fits our data.

3) Diagnostic Test to the Quadratic Polynomial Regression Model :

Moreover, we do the diagnostic test to the quadratic polynomial regression, the
results are shown in the Figure 10.
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Model 1: Purity ∼ Proportion+ I(Proportion2)

Model 2: Purity ∼ as.factor(Proportion) + I(as.factor(Proportion2))

Res.Df RSS Df Sum of Sq F Pr(>F)

1 267 0.039556

2 261 0.039327 6 0.00022897 0.2533 0.9577

Table 6: R Output of Quadratic Polynomial Regression Variance of ISOpureR

In the Figure 10(a), named the residual plot, the x -axis is the predicted or fitted
purity values and the y-axis is the residuals, or say, errors. In addition, the red line
is fairly horizontal, which means the variance in this model is not a constant. For
the second graph of the Figure 10(b), known as the quantile quantile (QQ) plot, the
x -axis is the ordered theoretical residuals and the y-axis is the ordered, observed,
standardised residuals. As the graph shows, the points do not fit the dash line well.
Consequently, we are supposed to have a further discussion that the residual terms,
or say, the errors are normally distributed. For the Figure 10(c), the scale-location
graph, the x -axis refers to the predicted or fitted purity values and the y-axis is the
ordered, observed, the square root of standardised residuals. In this graph, the red
line is relatively horizontal and the residuals is observed to be spread equally alone
the range of predictors; hence, the assumption of equal variance (homoscedasticity)
holds. In terms of the Figure 10(d), this plot is to figure out the influential cases.

Figure 10: Diagnostic Test for Quadratic Polynomial Regression of ISOpureR Method
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To be specific, the dataset may contain some extreme points, but they could be
not influential to determine a regression model, which means that the model would
not be very different in the situation with or without these points. However, for
the outlying points outside of the dashed line, Cook’s distance, they are influential
to our regression results. According to our Residual vs Leverage plot, there are
few points that beyond the Cook’s distance line, which are influential and may
have altered the regression result. Consequently, the model is generally stable since
almost all the points are not influential to our model.

4) Shapiro-Wild Test to the Quadratic Polynomial Regression Model :

To further test for the normality of the residuals, we apply the Shapiro–Wilk test
(Wild and Shapiro, 1965) to the residuals of quadratic polynomial regression of
ISOpureR method. The Shapiro–Wilk test is a test of normality in frequentist
statistics with hypothesis

– H0: the sample came from a normally distributed population.

– H1: the sample did not come from a normally distributed population.

The p-value of the Shapiro–Wilk test is 1.365×10−5, suggesting we have very strong
evidence against the H0. In other words, the residuals do not follow normal distri-
bution. However, according to the (Lumley et al., 2002), the least-squares linear
regression do not require any assumption of normal distribution in sufficiently large
samples in public health research. Moreover, formal statistical tests for normality
are especially undesirable as they will have low power in the small samples where the
distribution matters and high power only in large samples where the distribution is
unimportant.

Median Regression for ISOpureR Method and Analysis

In the previous part of the section, we have applied the linear regression and
quadratic polynomial regression to our results. However, the QQ plot implied
that the residuals might not follow normal distribution which undermine our as-
sumption of linear regression and quadratic polynomial regression. Here, we further
use the median regression to model our results since according to Furno and Vis-
tocco (2018), the quantile regression does not need the assumption of normality of
residuals.

We assume the results gathered from ISOpureR method satisfies the median regres-
sion model (see 2.2.19 for details), which is

y = α0 + α1x+ F−1(0.5) (4.1.5)

where α0 and α1 are the coefficients of the median regression model; F represents the
common distribution function of the errors without any distributional assumptions.
After doing regression, we obtain the regression coefficients where α0 = 1.12364,
and α1 = −1.07808. In other words,

Purity = 1.12364− 1.07808 ∗ Proportion (4.1.6)

where the plot of median regression is shown in the figure 11.

Lack-of-Fit Test for Median Regression of ISOpureR Method
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Figure 11: Median Regression of ISOpureR Method

According to the He and Zhu (2003), we apply the lack-of-fit test to the median
regression of ISOpureR method, and the results will given with the hypothesis test
where

– H0: median regression model adequately fits data.

– H1: median regression model does not adequately fit data.

After application of lack-of-fit test to the ISOpureR model, the p-value is less than
2.2× 10−16, implying that we have very strong evidence against the H0.

Second Order Median Regression Model for ISOpureR Method

Now, we assume the results gathered from ISOpureR method satisfies the gener-
alised median regression model, which is

y = α0 + α1x+ α2x
2 + F−1(0.5) (4.1.7)

where α0, α1 and α2 are the coefficients of the median regression model; F rep-
resents the common distribution function of the errors without any distributional
assumptions.

After calculating the coefficients, we have α0 = 1.09092, α1 = −0.88933, α2 =
−0.19887, that is,

Purity = 1.09092− 0.88933 ∗ Proportion− 0.19887 ∗ Proportion2 (4.1.8)

where the plot of median regression model for ISOpureR method is displayed in the
Figure 12.
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Figure 12: Generalised Median Regression Model of ISOpureR Method

Lack-of-Fit Test for Generalised Median Regression Model of ISOpureR Method

Additionally, we further do the lack-of-fit test using the method introduced by He
and Zhu (2003) to our generalised median regression model, and the p-value of
the test is equal to 0.21 suggesting we have no evidence against the H0 that the
generalised median regression model adequately fits our data.

• Regression Analysis to CLARKE

Now, we assume the results gathered from CLARKE method satisfies the linear
regression model, which is

y = β0 + β1x+ ε (4.1.9)

The fitted model of the method ISOpureR has the coefficients β0 = 0.546677, and
β1 = −0.425047, that is

Purity = 0.546677− 0.425047 ∗ Proportion (4.1.10)

Test of Significance:

By Casella and Berger (1990), the final results of significance test is given by the
null hypothesis with

– H0 : the coefficient of the linear regression is equal to 0.

– H1 : the coefficient of the linear regression is not equal to 0.

From the result of regression, the p-value of two coefficients are both less than
2×10−16 suggesting we have very strong evidence against the H0 that the coefficients
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of the equation are equal to 0. For adjusted R2, it is equal to 0.8154, implying that
the model fits the data well. However, from the plot of linear regression model (see
Figure 8), the standard error of each group of proportion is likely to increase when
the proportion becomes higher and higher. As a result, this observation may destroy
the assumptions of linear regression model, that the variance of observations around
the regression line (the residual standard error) is constant (homoscedasticity).
Next, we may need further discussion to the noise of the regression model.

Lack-of-Fit Test:

We present a lack-of-fit test to figure out whether the linear regression model is a
good choice. By Chatterjee et al. (1987), in the lack-of-fit test hypothesis are listed
in the following,

– H0: linear model adequately fits data.

– H1: linear model does not adequately fit data.

After analysing the residuals of the regression results of CLARKE method, we may
not be sure about whether the linear regression model fits the data best. Here, we
do the lack-of-fit test to examine whether the linear model adequately fits data. The
p-value of the linear regression model of the CLARKE method is 0.1153 implying
that we have no evidence against the H0. In such a case, we are able to conclude
that the linear model adequately fits our data.

Diagnostic Test:

To further examine the noise of the model, we apply diagnostic test to the CLARKE
regression model; and plot four graphs to illustrate the main characteristics.

In Figure 13(a), the residual plot, the red line in this graph is regard to be horizontal,
which means the variance in this model may be constant. For the QQ plot (Figure
13(b)), although the points fit the diagonal line well in the middle part of the graph,
the points at two sides are higher than the standard line. Consequently, we need
further discussion to conclude whether the residuals follow normal distribution. For
the Figure 13(c), the red line is almost horizontal and the residuals is observed to be
spread equally alone the range of predictors; hence, the assumption of equal variance
(homoscedasticity) holds. In terms of the Figure 13(d), Residual vs Leverage plot,
there are few points that beyond the Cook’s distance line, suggesting the model is
generally stable.

Shapiro-Wild Test to the CLARKE Method:

To test the normality of the residuals, we apply the Shapiro–Wilk test (Wild and
Shapiro, 1965) to the residuals of linear regression model of CLARKE method. The
Shapiro–Wilk test is a test of normality in frequentist statistics with hypothesis

– H0: the sample came from a normally distributed population.

– H1: the sample did not come from a normally distributed population.

The p-value of the Shapiro–Wilk test is 1.136 × 10−11, suggesting we have very
strong evidence against the H0. In other words, the residuals do not follow normal
distribution. However, according to the (Lumley et al., 2002), the test of normality
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Figure 13: Diagnostic Test of CLARKE Regression Model

is not important in the research related to the public health. In a word, the non-
normality will not destroy our model.

Median Regression for CLARKE Method and Analysis:

In the previous part of the section, we have applied the linear regression to the
results calculated with application of CLARKE method. However, the QQ plot
implied that the residuals might not follow normal distribution which undermine
our assumption of linear regression model. Given that the quantile regression does
not need the assumption of normality of residuals (Furno and Vistocco, 2018), we
further examine whether the median regression model fit the results of CLARKE
method.

We assume the results gathered from ISOpureR method satisfies the median regres-
sion model, which is

y = α0 + α1x+ F−1(0.5) (4.1.11)

where α0 and α1 are the coefficients of the median regression model; F represents the
common distribution function of the errors without any distributional assumptions.
After doing regression, we obtain the regression coefficients where α0 = 0.55341,
and α1 = −0.46883. In other words,

Purity = 0.55341− 0.46883 ∗ Proportion (4.1.12)

where the plot of median regression is shown in the figure 14.

Lack-of-Fit Test for Median Regression of CLARKE Method
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Figure 14: Median Regression of CLARKE Method

According to the He and Zhu (2003), we apply the lack-of-fit test to the median
regression of CLARKE method with the hypothesis that

– H0: median regression model adequately fits data.

– H1: median regression model does not adequately fit data.

After application of lack-of-fit test to the ISOpureR model, the p-value is 0.09,
implying that we only have weak evidence to against the H0. In other word, the
model is able to fit the data well.

In comparison of both of the methods, we are able to conclude that the ISOpureR method
is likely to describe data more adequately when we apply quadratic polynomial regression
model to fit the results; whilst for the CLARK method, the linear model is sufficient
enough to do so. Moreover, with respect to the performance of two methods, both of
them are not stable in terms of the simple extreme data; however, when we apply the
methods to the simulated data based on the real data, the ISOpureR may perform better
than the CLARKE method because of the underestimation from the CLARKE method.
After examining both of the methods’ results, we can conclude that both of the methods
are stable with respect to the simulated data generated from the real data. In detail,
the ISOpureR method is significantly stable with respect to the second order generalised
median regression model; whilst the CLARKE method is likely to perform stably in
terms of the median regression. Generally speaking, ISOpureR method provides us more
accurate, and stable results, than the CLARKE method. Although it might be true that,
as Clarke et al. (2010) illustrated, the CLARKE method have increased the efficiency
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of estimation compared with the prototype of the CLARKE method created by Gosink
et al. (2008) in terms of the deconvolution of tumour sample data; with respect to our
deconvolution of m6A-containing mRNA data, the method is not as efficient as it is
stated. Thus, with respect to the results we obtained from simulated data so far, when
we analysing the m6A-containing data, ISOpureR method is likely to perform better than
the CLARKE method.

4.2 Real Data

After analysing the test data, we apply the two methods to our real data to estimate the
true proportion of m6A specific binding mRNA in the IP sample. Here, we present
five results calculated from both of the methods from five real datasets, which are
‘human-A549-C’, ‘human-A549-METTL3-’, ‘human-A549-METTL14-’, ‘human-H1ESC-
T48’, and ‘human-hESC-C’ respectively.

Methods

Experiments human-A549-C

SRR1182619 SRR1182621 SRR1182623

ISOpureR 1.000 1.000 1.000

CLARKE 0.397 0.452 0.450

human-A549-METTL3-

SRR1182615 SRR1182617 SRR1182629

ISOpureR 1.000 1.000 1.000

CLARKE 0.464 0.540 0.375

human-A549-METTL14-

SRR1182607 SRR1182609 SRR1182611 SRR1182613

ISOpureR 1.000 1.000 1.000 1.000

CLARKE 0.445 0.461 0.430 0.386

human-H1ESC-T48

SRR1035218 SRR1035220

ISOpureR 1.000 1.000

CLARKE 0.686 0.698

human-hESC-C

SRR1035222 SRR1035224

ISOpureR 1.000 1.000

CLARKE 0.665 0.619

Table 7: Results of Real Datasets

In the ‘Results of Real Datasets’ (Table 7), the numbers represent the proportion of
m6A binding mRNA in the IP sample. Although from the previous subsection, we have
concluded that the method ISOpureR has a better efficiency than the method CLARKE,
it always converge to 1 when we perform the method to the real data. However, the
CLARKE method may perform better than the ISOpureR method with respect to the
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real m6A-containing data. This problem may come from the size of the dataset; where
when we use the test data, there are totally 500 gene sites, whilst when we refer to the
real data, the number of gene sites becomes 69946.

This problem may result from the number of gene sites. In our project, we do an anal-
ogy between deconvolution of the tumour samples and the deconvolution of the m6A-
containing samples. In other words, these two methods are not designed to process the
m6A-containing dataset. As a result, when we apply ISOpureR method to out data, the
extremely large number of gene sites make the method always converge to 1. Moreover,
another difference between the data of m6A-containing samples and the data of tumour
samples is that, our data does not contain many reference profiles. This difference may
cause the CLARKE method shows instability when we apply the linear regression model
to fit the test data.

In conclusion, the performances of both methods depend on the data we used. In terms of
the number of gene sites, when our data has a large number of gene sites, the ISOpureR
method will fail since it always converge to 1; however, when the number is relatively
small, the ISOpureR method performs better than the CLARKE method no matter what
indicators we are used to examine. Moreover, the CLARKE method is likely to be useful
when the number of gene sites is large. Although it can also estimate a stable value when
the number of gene sites is small, the results we obtained from the CLARKE method is
an underestimation and become more and more unstable when the proportion of input
profiles increase. Next, with respect to the extreme case of data, both of the methods
fail to estimate the true proportion of the pure component in the contaminated samples.

5 Conclusions

In this project, we draw an analogy between the method of deconvolution of the tumour
samples with respect to the normal samples and the deconvolution of the IP samples in
terms of the input samples.

In order to accomplish the goal of estimation of true proportion of m6A specific bind-
ing mRNA in the IP sample, we have examined two methods, ISOpureR and CLARKE
respectively. After reviewing the necessary preliminary knowledge of biology and math-
ematics, we introduced the basic ideas and algorithms of these two method. For the
ISOpureR method, the main idea is to maximising the complete likelihood function to
estimate the parameters with application of the flexible preconditioned conjugate gra-
dient method; whilst for the CLRAKE method, the model is generated after doing the
components analysis and then, we apply the knowledge of differential geometry to find
the minimum of radius of curvature.

Furthermore, after having introduced the basic idea of the methods, we applied test data
and real data to test the performance of both of the methods with the application of
the knowledge of regression analysis. First, we used the simple extreme data to test
both two methods and the results showed that both of the methods were unstable to
the dataset. Next, we generated a simple simulated dataset using real data, where we
generated the pure m6A binding samples by randomly permutating the input sample;
after randomly choosing 500 gene sites to form our new dataset, we apply binomial
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distribution to generate the IP samples with different mixing proportions with respect to
the input profiles. Finally, we applied 30 different simulated real data samples to examine
the ISOpureR and CLARKE method.

Then, we calculated and analysed the results of both of the methods. For ISOpureR
method, we firstly applied the linear regression model to the results and test its ratio-
nality. Although the significant test implied that the linear regression model fit the data
quite well, the lack-of-fit test suggested that we have very strong evidence against the
null hypothesis, that linear model adequately fits data. As a consequence, we used the
quadratic polynomial regression to model the ISOpureR method. Similarly, we did the
significance test and lack-of-fit test, and the tests have illustrated that the model de-
scribed the data well and can adequately fit data. However, the diagnostic test implied
that the residuals of the fitted results might not follow normal distribution, undermining
the assumption of the quadratic polynomial regression. Although evidence have showed
that the non-normality was not supposed to be important and would not destroy our
regression model due to the research is all about public health, the second order gener-
alised median regression model shows stability and get rid of the assumption requiring
normality of the residuals. Therefore, the ISOpureR method was able to be stable and
estimated accurately under the second order generalised median regression model. For
CLARKE model, we have done the linear regression to the results and the low value of
significance test showed that we have very strong evidence against the null hypothesis,
the coefficients of the linear regression is equal to 0, and the R2 value also implied that
the model fits the data well. Similar to the ISOpureR model, we also did the lack-of-fit
test to the CLARKE method, and the result provided no evidence for us to against the
null hypothesis that linear model adequately fits our data. As a result, the linear model
was adequately describe the data. Next, we also do the diagnostic test to the CLARKE
method and all the results suggested that the regression model met the assumptions of
linear regression except the normality of the residuals. Although evidence have showed
that the non-normality was not supposed to destroy our regression model because of
insignificance of the normality of the public health research, median regression model
performed more efficiently because the avoidance of the assumption requiring that the
normality of the residuals.

After analysing the behaviours of the two methods in terms of the simulated data, we
have also examined the performance of both of the methods when applying to the real
data. After computing five different samples of data, we found that the ISOpureR method
would always converge to 1 after iteration, whilst the CLARKE method was more stable
and accurate. In comparison of both of the methods in terms of both kinds of data,
we conclude that the ISOpureR method is more stable and performed more efficiently
when the data has a relatively small number of gene sites; otherwise, the results of the
ISOpureR method would always converge to 1. For the CLARKE method, it has a
better performance when the number of gene sites is relatively large; although it is able
to obtain some stable results when applied to the data with a small number of gene sites,
the efficiency of estimation is much worse than the ISOpureR method.

In the future, we may improve the model by adjust the parameters of the ISOpureR
method such that it can be more efficient when applying to the data with a large number
of gene sites; and figure out the critical number of gene sites so that we are able to
determine under which conditions of the data, the ISOpureR method will provide us a
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better value of proportion, and under what circumstance, the CLARKE will be more
stable and accurate than the ISOpureR method.

6 Acknowledgement

I am sincerely grateful for my thesis supervisor, Dr. Jionglong Su and Dr. Jia Meng, for
their patient guidance and tutorial. In addition, many thanks to Dr. Zhen Wei for his
time to illustrate the preliminary knowledge about biology and statistics in such a detail
to me.

38



References

Y Aloni, R Dhar, and G Khoury. Methylation of nuclear simian virus 40
rnas. Journal of Virology, 32(1):52–60, 1979. ISSN 0022-538X. URL
https://jvi.asm.org/content/32/1/52.

Karen Beemon and Jerry Keith. Localization of n6-methyladenosine in the rous
sarcoma virus genome. Journal of Molecular Biology, 113(1):165 – 179, 1977.
ISSN 0022-2836. doi: https://doi.org/10.1016/0022-2836(77)90047-X. URL
http://www.sciencedirect.com/science/article/pii/002228367790047X.

Annette Burden, Richard L. Burden, and J Douglas Faires. Numerical Analysis, 10th ed.
Cengage, 01 2016. ISBN 1305253663. doi: 10.13140/2.1.4830.2406.

G. Casella and R.L. Berger. Statistical Inference. Duxbury advanced se-
ries. Brooks/Cole Publishing Company, 1990. ISBN 9780534119584. URL
https://books.google.co.uk/books?id=xA7vAAAAMAAJ.

Samprit Chatterjee, R J. Brock, and G C. Arnold. Applied regression analysis and
experimental design. Journal of Business and Economic Statistics, 5:160, 01 1987. doi:
10.2307/1391229.

Bertrand Clarke, Jennifer Clarke, and Pearl Seo. Statistical expression de-
convolution from mixed tissue samples. Bioinformatics, 26(8):1043–1049,
03 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/btq097. URL
https://doi.org/10.1093/bioinformatics/btq097.

Ronald Desrosiers, Karen Friderici, and Fritz Rottman. Identification of methy-
lated nucleosides in messenger rna from novikoff hepatoma cells. Proceedings of
the National Academy of Sciences, 71(10):3971–3975, 1974. ISSN 0027-8424. doi:
10.1073/pnas.71.10.3971. URL http://www.pnas.org/content/71/10/3971.

Dan Dominissini, Sharon Moshitch-Moshkovitz, Mali Salmon-Divon, Ninette Amariglio,
and Gideon Rechavi. Transcriptome-wide mapping of n6-methyladenosine by m 6a-
seq based on immunocapturing and massively parallel sequencing. Nature protocols, 8:
176–89, 01 2013. doi: 10.1038/nprot.2012.148.

Friederike Dündar, Luce Skrabanek, and Paul Zumbo. Introduction to Differential Gene
Expression Analysis Using RNA-Seq. Weill Cornell Medical College, 2015. URL
http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf.

Marilena Furno and Domenico Vistocco. Quantile regression: Estimation and simu-
lation. Quantile Regression: Theory and Applications, pages 1–287, 01 2018. doi:
10.1002/9781118863718.

A.B. Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian data analysis.
The Statistician, 45, 01 2003. doi: 10.2307/2988417.

Mark Gosink, Howard Petrie, and Nicholas Tsinoremas. Electronically subtracting ex-
pression patterns from a mixed cell population. Bioinformatics (Oxford, England), 23:
3328–34, 01 2008. doi: 10.1093/bioinformatics/btm508.

39



Mark M. Gosink, Howard T. Petrie, and Nicholas F. Tsinoremas. Electronically sub-
tracting expression patterns from a mixed cell population. Bioinformatics, 23(24):
3328–3334, 10 2007. ISSN 1367-4803. doi: 10.1093/bioinformatics/btm508. URL
https://doi.org/10.1093/bioinformatics/btm508.

Xuming He and Li-Xing Zhu. A lack-of-fit test for quantile re-
gression. Journal of the American Statistical Association, 98
(464):1013–1022, 2003. doi: 10.1198/016214503000000963. URL
https://doi.org/10.1198/016214503000000963.

Ian Jolliffe. Principal component analysis / i. t. jolliffe. SERBIULA (sistema Librum
2.0), 03 2002.

Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge Uni-
versity Press, 2005. doi: 10.1017/CBO9780511754098.

Thomas Lumley, Paula Diehr, Scott Emerson, and Lu Chen. The importance of
the normality assumption in large public health data sets. Annual Review of Pub-
lic Health, 23(1):151–169, 2002. doi: 10.1146/annurev.publhealth.23.100901.140546.
URL https://doi.org/10.1146/annurev.publhealth.23.100901.140546. PMID:
11910059.

Christopher A. Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-
Sundaram, Bo Han, Xiaojun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy,
and Arul M. Chinnaiyan. Transcriptome sequencing to detect gene fusions in cancer.
Nature, 458:97–101, 2009. doi: https://doi.org/10.1038/nature07638.

Jia Meng, Shao-Wu Zhang, Yufei Huang, and Lian Liu. Qnb: differential rna methy-
lation analysis for count-based small-sample sequencing data with a quad-negative
binomial model. BMC Bioinformatics, 18(1):387, Aug 2017. ISSN 1471-2105. doi:
10.1186/s12859-017-1808-4. URL https://doi.org/10.1186/s12859-017-1808-4.

Kate Meyer and Samie Jaffrey. The dynamic epitranscriptome: N6-methyladenosine and
gene expression control. Nature Reviews Molecular Cell Biology, 15, 04 2014. doi:
10.1038/nrm3785.

Ryan D. Morin, Matthew Bainbridge, Anthony Fejes, Martin Hirst, Martin Krzywin-
ski, Trevor J. Pugh, Helen McDonald, Richard Varhol, Steven J.M. Jones, , and
Marco A. Marra. Profiling the hela s3 transcriptome using randomly primed cdna
and massively parallel short-read sequencing. BioTechniques, 45(1):81 – 93, 2008. doi:
https://www.future-science.com/doi/pdf/10.2144/000112900.

Y. Notay. Flexible conjugate gradients. SIAM Journal on Scientific Com-
puting, 22(4):1444–1460, 2000. doi: 10.1137/S1064827599362314. URL
https://doi.org/10.1137/S1064827599362314.

Robert P. Perry, Dawn E. Kelley, Karen Friderici, and Fritz Rottman. The
methylated constituents of l cell messenger rna: Evidence for an un-
usual cluster at the 5’ terminus. Cell, 4(4):387 – 394, 1975. ISSN
0092-8674. doi: https://doi.org/10.1016/0092-8674(75)90159-2. URL
http://www.sciencedirect.com/science/article/pii/0092867475901592.

40



Selva Prabhakaran. Assumptions of Linear Regression. r-statistics.co, 2016. doi: http://r-
statistics.co/Assumptions-of-Linear-Regression.html.

A.N. Pressley. Elementary Differential Geometry. Springer-Verlag London, 2 edition,
2010. doi: 10.1007/978-1-84882-891-9.

Gerald Quon, Syed Haider, Amit Deshwar, Ang Cui, Paul C Boutros, and Quaid Morris.
Computational purification of individual tumor gene expression profiles leads to sig-
nificant improvements in prognostic prediction. Genome medicine, 5:29, 03 2013. doi:
10.1186/gm433.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Matlab Library, 2006. doi: https://rdrr.io/cran/gpr/src/R/minimize.r.

Wenyu Sun and Ya-Xiang Yuan. Optimization Theory and Methods: Nonlinear Program-
ming, volume 1. Springer, 1 edition, 2006. doi: 10.1007/b106451.

Xiao Wang, Boxuan Zhao, Ian Roundtree, Zhike Lu, Dali Han, Honghui Ma, Xi-
aocheng Weng, Kai Chen, Hailing Shi, and Chuan He. N6-methyladenosine mod-
ulates messenger rna translation efficiency. Cell, 161:1388–1399, 06 2015. doi:
10.1016/j.cell.2015.05.014.

M. B. Wild and S. S. Shapiro. An analysis of variance test for normality (com-
plete samples)†. Biometrika, 52(3-4):591–611, 12 1965. ISSN 0006-3444. doi:
10.1093/biomet/52.3-4.591. URL https://doi.org/10.1093/biomet/52.3-4.591.

41


