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Introduction

Motivation

What is a Generalized Bayesian Factor Analysis (GBFA) model?

The GBFA is used for extraction of the common factors.

Why we need GBFA model?

Example: Clustering - Grouping about the data.
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Introduction

What is Factor Analysis Model?

Suppose we have a set of p observable random variables x1, . . . , xp, with
means µ1, . . . , µp. Suppose for some unknown constants lij and
unobserved random variables Fj , where i ∈ 1, 2, . . . , p and j ∈ 1, 2, . . . , k,
where k < p, we have that the terms in each random variable should be
writeable as a linear combination of the common factors:

xi − µi = li1F1 + · · ·+ likFk + εi .
x1 − µ1

x2 − µ2

. . .
xp − µp

 =


l11 l12 . . . l1k
l21 l22 . . . l2k
. . . . . . . . . . . .
lp1 lp2 . . . lpk



F1

F2

. . .
Fk

+


ε1

ε2

. . .
εp


Here, the εi are unobserved stochastic error terms with zero mean and
finite variance, which may not be the same for all i .
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Model Formulation

Model Formulation

Suppose we have H multi-modal data generated from various technologies,
say X 1

p1×n, . . . ,X
H
pH×n. Denote

X =


X 1
p1×n

X 2
p2×n
. . .

XH
pH×n

 ∈ Rp×n

where p =
∑H

h=1 ph.
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Model Formulation

Model Formulation

Example: Three datasets from CellMiner, two of which are gene expression
data and the other one is protein abundance data.

The first data - a transcript profile data based on Affymetrix
HG-U133 chips;

The second data - a mRNA expression data based on Agilent Whole
Human Genome Oligo Microarray technology;

The last data - a proteomics profiling data using high-density
reverse-phase lysate microarrays.

We use 59 cell line data consisting of 9 subgroups which are common to
all three datasets. we select the top 5% of genes with high variance, which
results in 491 genes in the affymetrix data, 488 genes in the agilent data,
and 94 proteins in proteomics data.
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Model Formulation

Model Formulation

Suppose xji for all 1 ≤ i ≤ n belong to the same distribution family and
the distribution of X has the following form of likelihood which is governed
by the parameter matrix µ:

π(X |µ) =

p∏
j=1

n∏
i=1

πj(xji |µji )︸ ︷︷ ︸
the j−th row

where in this model, we can assume xji follows the binomial, negative
binomial, Poisson, and Gaussian distributions.
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Model Formulation

What is µ?

We assume Generalized Bayesian Factor Analysis Model:

Let zi be the L-dimensional latent factor for the i-th subject and w̃j be the
factor loadings for the j-th feature. Let

µ = m1T + WZ

= m1T +

w̃1

. . .
w̃p


p×L

[
z1 . . . zn

]
L×n

where L� p, m is a random variable which represents the location of the
data.
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Model Formulation

Model Formulation

Recall that we assume

π(X |µ) =

p∏
j=1

n∏
i=1

πj(xji |µji )︸ ︷︷ ︸
the j−th row

where in this model, we can assume xji follows the binomial, negative
binomial, Poisson, and Gaussian distributions.
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Model Formulation

Model Formulation

Binomial distribution:

πj(xji |µji ) =

(
nj
xji

)
eµjixji

(1 + eµji )rj+xji
, 0 ≤ xji ≤ nj

Negative Binomial distribution:

πj(xji |µji ) =

(
rj + xji − 1

xji

)
eµjixji

(1 + eµji )rj+xji
, xji ≥ 0

Poisson distribution:

πj(xji |µji ) = e−e
µji eµjixji

xji !
, xji≥0

Gaussian distributions:

πj(xji |µji ) =
ρ

1/2
j√
2π

e−ρj (xji−µji )
2/2, xji ∈ R
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Model Formulation

Prior for Z

We consider the standard Gaussian prior for Z since the standard
orthonormality assumption on the latent factors,

log π(Z ) = C − 1

2

L∑
l=1

n∑
i=1

z2
li .

Jingxuan Bao (Shen’s Lab) J. Bao Presentation September 11, 2020 13 / 34



Model Formulation

Prior for W

We first consider the L1 shrinkage spike and slab prior on W ,

log π(W |γ) =C +

p∑
j=1

L∑
l=1

log λjl −
p∑

j=1

L∑
l=1

λjl |wjl |

where λjl = (1− γjl)λ0 + γjlλ1, 0 ≤ λ1 ≤ λ0.

Intuition of Spike and Slab Prior

We assume spike and slab prior to incorporate the graph information.
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Model Formulation

Intuition of Spike and Slab Prior

What we want is group-wised selection, i.e., if two genes are correlated, we
want to select them both. So, if two genes are correlated, they will at least
share one common factor. We encourage the adjacent variables (correlated
genes) in our prior graph information to load the same factors.
Specifically, we assume the mean of data xi , i ∈ {1, . . . , p} is a linear
combination of factors zj , j ∈ {1, . . . , k} plus a location variable.

µij = mi + ωi1zi1 + ωi2zi2 + · · ·+ ωiLziL.

If xj and xk are adjacent in G and if ωjl 6= 0 for some l , then we promote
wkl 6= 0.
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Model Formulation

Incorporating Graph Information

We consider to incorporating network information into the prior for γ.

Figure: Example of Graph Information

Suppose the graphs G is the adjacency matrix for graph 〈P,E 〉, which is
obtained by combining the graphs 〈Ph,Eh〉 , where the presence of edge
indicates the correlation between the relevant pair of variables.

According to this set up, we achieve that if the latent factors are
independent, the only way a pair of variables can be correlated is that they
must load at least one common factor.
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Model Formulation

Incorporating Graph Information - Prior for γ

Therefore, it is reasonable to encourage the pairs of adjacent variables to
share common factors.

We can employ the Markov random field prior for γ,

log π(γ) = Cδ,η − δ
p∑

j=1

L∑
l=1

γjl + η

p∑
j=1

p∑
k=1

L∑
l=1

Gjkγjlγkl .

We can also empoly the Ising prior for γ,

log π(γ) = Cδ,η − δ
p∑

j=1

L∑
l=1

γjl + η

p∑
j=1

p∑
k=1

L∑
l=1

GjkI(γjl = γkl).
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Model Formulation

Model Formulation - Summary

Figure: Summary of Model Formulation
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Unify Likelihood Functions

Unify Likelihood Functions
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Unify Likelihood Functions

Unify Likelihood Functions

Recall that we assume

π(X |µ) =

p∏
j=1

n∏
i=1

πj(xji |µji )︸ ︷︷ ︸
the j−th row

where in this model, we can assume xji follows the binomial, negative
binomial, Poisson, and Gaussian distributions.

Now, we want to unify the likelihood functions for different distributions.
We present the identity

eµjixji

(1 + eµji )bji
=

2

−bji
eκjiµji

∫ ∞
0

e−ρjiµ
2
ji/2πji (ρji )dρji ,

where κ = xji −
bji
2 and π(ρji ) = PG(bji , 0).
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Unify Likelihood Functions

Unify Likelihood Functions

Now we apply the identity to the binomial, negative binomial, and Poisson
likelihood functions, then we will obtain

πj(x̃j , ρ̃j |µ̃j) = πj(x̃j |µ̃j)π
∗(ρ̃j) ∝ e−

1
2

∑
i ρji (µji−ψji )

2+
∑

i κjiµjiπ∗j (ρ̃j)

where the unknown parameters are shown in Table 1.

Type ψji κji π∗j (ρj)

Gaussian xji 0 ρji = ρj ∼ G(
ζj+n

2 ,
ζj
2 )

Binomial 0 xji −
nj
2 ρji ∼ PG(nj , 0)

Negative Binomial 0
xji−rj

2 ρji ∼ PG(xji + rj , 0)

Table: Parameters for Unified Likelihood
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Unify Likelihood Functions

Unify Likelihood Functions

Now, the full likelihood can be written as

π(γ,ρ,W ,Z ,X |m) = π(W |γ)π(γ)π(Z )
∏
j

πj(x̃j |µ̃j)π
∗
j (ρ̃j).
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Variational EM Algorithm

Variational EM Algorithm
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Variational EM Algorithm

Maximum a Posteriori Estimation and EM Algorithm

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate
is an estimate of an unknown quantity, that equals the mode of the
posterior distribution.

When dealing with the problem containing latent variable (γ), we often
need to first marginalize the latent variable out and then take derivation.

Problems

Somehow it is impossible to marginalize γ but calculate the expected
value of log posterior likehood is somewhat doable.
Even if the marginalization of γ is possible, the calculation is not easy.

Solution

EM Algorithm
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Variational EM Algorithm

EM Algorithm and Variational EM Algorithm

When doing E-step, sometimes the classical EM approach involves an
intractable conditional expectation of the log-likelihood.

To address the problem, we use the latent variable augmentation
technique and the variational EM approach.
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Variational EM Algorithm

Variational EM Algorithm

Since the EM Algorithm does not have analytic solution to the conditional
expectations involving γ, ρ,Z given W . We consider the variation EM
approach. We consider a product measure on individual γjl , ρ,Z and let
π̂(γ, ρ,Z ) = π̂(γ)π̂(ρ)π̂(Z ) where

π̂(γ) =
∏
j

∏
l

θ
γjl
jl (1− θjl)1−γjl

π̂(ρ) ∝
∏
j

e−
1
2

∑
i ρjiϕ

2
jiπ∗j (ρ̃j)

π̂(Z ) ∝
∏
i

e−
1
2

(zi−µz,i )
T Σ−1

z,i (zi−µz,i )

where Ê is the expectation operator under π̂. Note that θ, ϕ, µ and σ are
variational parameter which are not fixed yet.
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Variational EM Algorithm

Variational EM Algorithm - Kullback Leibler Divergence

Problem

The variational measure is not equal to the actual conditional distribution,
which cause the calculation of expectation not precise.

Solution

We need to make the variational measure as closed as the actual
conditional distribution. It is natural to consider a distance which measure
two different distribution.
Kullback Leibler Divergence
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Variational EM Algorithm

Variational EM Algorithm - Kullback Leibler Divergence

The Kullback–Leibler divergence from Q to P is defined to be

DKL(P||Q) = −EP logQ + EP logQ.

Here, we let P to be variational measure and Q to be actual conditional
distribution.

Here the smaller the KL divergence, the “closer” the two distributions.

To make the variational measure as close to the actual conditional
distribution as possible, we need to minimize the KL divergence between
the variational measure and actual conditional distribution.
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Variational EM Algorithm

Variational EM Algorithm - Variational Parameter

Minimize
DKL(P||Q) = −EP logQ + EP logQ

with respect to the variational parameters. We will obtain the update
formula for variational parameters.
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Variational EM Algorithm

Variational EM Algorithm - Variational EM Algorithm

E-Step:

Take expectation to the log posterior distribution with respect to latent
variables using variational measure.

M-Step:

Find the optimizer to maximize the formula we obtained in E-Step to
obtain the update formula for the other model parameters.
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Variational EM Algorithm

Variational EM Algorithm - Variational EM Algorithm

Algorithm 1

Initialization;
Iteration:

Update variational parameters until convergence;
Iteration:

Calculate E-Step using obtained variational measure;
Calculate M-Step to update the other model parameters until
convergence;

Algorithm 2

Initialization;
Iteration until convergence:

Update variational parameters once;
Iteration:

Calculate E-Step using obtained variational measure;
Calculate M-Step to update the other model parameters once;
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Variational EM Algorithm

Variational EM Algorithm - ELBO

We can merge the step of minimization of KL divergence and the E-step
and M-step together by using ELBO formula.

The definition of ELBO formula:

ELBO(P) = EP logQ(z , x)− EP logP(z)

where Q is posterior density and P is variational measure; and z is the set
of variational parameters, x is the set of model parameters. The
expectation is taken with respect to the P measure.

After we calculated the ELBO,

we maximize it with respect to the variational measure parameters;

we maximize the formula with respect to the other model parameters;

and we just repeat the step until convergence.
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Variational EM Algorithm

Variational EM Algorithm - Intuition of ELBO

Recall the KL divergence:

DKL(P||Q) = −EP logQ(z , x) + EP logP(z)

Recall the ELBO formula:

ELBO(P) = EP logQ(z , x)− EP logP(z)
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Variational EM Algorithm

Thank You
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