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Abstract

Based on the article “On the Maximal Size of Large-Average and ANOVA-Fit Submatirces in
a Gaussian Random Matrix” by Sun and Nobel, we investigate the maximal size of submatri-
ces with average of the values of such submatrices more than a fixed positive number in the
Gaussian random matrix. We identify the limit behavior of the threshold of the size of sub-
matrices theoretically and numerically. Our principal result is an inconsistency between the
results of two approaches and we propose our own analysis from the theoretical and numerical
perspectives.

keywords: Gaussian random matrix; large-average submatrix; sandwiching method; large-
average submatrix threshold searcher algorithm
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1 Introduction

DNA microarrays (also commonly known as DNA chip or biochip) allow scientists to measure the
coexpression levels of large numbers of genes simultaneously or to genotype multiple regions of a
genome. With the development of the DNA microarrays, many technologies and applications in
biostatistics or bioinformatics thrive in modern society, such as gene expression profiling (Adomas
et al., 2008), comparative genomic hybridization (Pollack et al., 1999; Moran et al., 2004), and
SNP detection (Hacia et al., 1999).

In particular, one important aspect of DNA microarray study is assessments of differential expres-
sion in a group of genes (functional category). More specifically, a subarray of a microarray is
obtained by restricting to a subset of subjects and a subset of genes. We are supposed to examine
when it has a surprisingly high degree of similarity when studying some subarrays of microarray
population. A method in statistics which is wildly used to solve this kind of problems is called
Statistical Hypothesis Testing. In this report, we provide a toy model for the null hypothesis on
microarrays, in which we substitude high average value of independent and identically distributed
(i.i.d.) standard normal random variable to the high genetic similarity of microarrays, examing
whether such kind of high similarity results from the genetic data, or it is a common property
in a large Gaussian random matrix. In summary, instead of examine the microarray dataset, we
evaluate the maximum size of large-average submatrices in a Gaussian random matrix.

A Gaussian random matrix is a matrix whose elements are identical independent standard normal
random variables. In our report, based on the analysis from Sun and Nobel (2013), “ On the
Maximal Size of Large-Average and ANOVA-Fit Submatirces in a Gaussian Random Matrix”, we
introduce the method of finding the maximum size of submatrices with average greater than a
certain number in the Gaussian random matrix, specifically finding an expression of maximum size
of submatrices of Gaussian random matrix in terms of a certain number, from both theoretical and
numerical approaches.

In this report, literature review including previous work is introduced in Section 2. The theoretical
approach to find the probability bounds for the size of large-average submatrices in the square
matrix is presented in Section 3. The numerical approach to find the threshold for large-average
submatrices is given in Section 4. Section 5 contains our integration of theoretical result and
numerical result.

2 Literature Review

Our report is mainly based on the paper published by Bernoulli “ On the Maximal Size of Large-
Average and ANOVA-Fit Submatirces in a Gaussian Random Matrix” (Sun and Nobel, 2013).

In the original article, the authors introduce main three theoretical methods to analyze the thresh-
olds for the large-average submatrices:

• Method 1: Bipartite Graphs

In this method, the authors expressed the m×n matrix X using a bipartite graph G = (V,E),
where V represents the vertex set of G containing two disjoint sets V1 and V2 with |V1| = m,
|V2| = n, representing the rows and columns of matrix X respectively; and E represents the
set of the edges connecting row i ∈ V1 and column j ∈ V2 with weight xi,j . Vertices in the
same vertex set are not allowed to have edge. In such scenario, the large-average submatrices
of X are one-to-one correspondence with subgraphs of G, showing in the Figure 1.

However, according to Dawande et al. (2001), to find the edge with maximum weight subgraph
in a general bipartite graph, a slightly variation of this problem, is NP-complete. In other
words, there is no fast algorithm to solve this kind of problem.

• Method 2: Random Matrix Theory

In this method, the authors define the notations in Table 1.

We summarize the logic of Mehod 2 in Figure 2.

With the assumption that m and n grow with m
n → α for α ≥ 1, and the dimensions k and

l grow with k
lnn →∞ and 0 < k

l <∞, we have

P(∃ k × l submatrix inW whose average > τ)→ 0
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Figure 1: Matrix Bipartite Graph Correspondence

Name Definition

W m× n Gaussian random matrix

τ Fixed number that is greater than 0

a Indicator vectors having k non-zero components, a ∈ {0, 1}m

b Indicator vectors having l non-zero components, b ∈ {0, 1}n

U Submatrix whose rows and columns are indexed by a and b, U = abT

S Rank-one matrix, S = (1 + δ)τabT , where δ > 0

Y Sum of W and S (a perturbed version of S), Y = W + S

Table 1: Definition of Notations

Figure 2: Logic Graph of Method 2

On the other hand, we also have the average of the k × l submatrix U of Y has distribution
N ((1 + δ)τ, (kl)−1), which means when k and l are large, we have

P(average of U > τ)→ 1

We expect to see evidence of submatrix U in the first singular value of Y ; however this is not
the case.

• Method 3: Probability Bounds and A Finite Interval Concentration Result

Method 3 is the main method the authors introduce in the original article. This method can
be divided into two parts: the first part concludes the expected number of k× k submatrices
U of Wn with F (U) ≥ τ is less than one, where F (·) denotes calculating the average of all
the elements; and the second part deduces when the size of Gaussian random matrix n is
sufficient large, the largest value k such that n × n Gaussian matrix Wn contains a k × k
submatrix U with average greater or equal to τ for some fixed τ > 0 approaches to 4

τ2 lnn
almost surely when n goes to infinity.
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We will study this method in detail in the next section.

3 Methodology

In this section, we review the paper written by Sun and Nobel (2013) and theoretically formalize
the model to find the thresholds and bounds for large average submatrices following the same
process of derivation of the original article.

3.1 Definition of Notations with Example Explanations

In this part of the section, we define the notions we will use later when deriving the theoretical
result with example explanations.

• W = {wi,j : i, j ≥ 1}: Infinite array of independent N(0, 1) random variables.

Explanation: W has the form shown below
w1,1 w1,2 w1,3 w1,4 w1,5 ...
w2,1 w2,2 w2,3 w2,4 w2,5 ...
w3,1 w3,2 w3,3 w3,4 w3,5 ...
w4,1 w4,2 w4,3 w4,4 w4,5 ...
w5,1 w5,2 w5,3 w5,4 w5,5 ...
... ... ... ... ... ...


where every wi,j denotes i.i.d. random variable with distribution N (0, 1).

• Wn = {wi,j : 1 ≤ i, j ≤ n}: n × n Gaussian random matrix equal to upper left-hand corner
of W .

Example: W5 has the form shown below:
w1,1 w1,2 w1,3 w1,4 w1,5

w2,1 w2,2 w2,3 w2,4 w2,5

w3,1 w3,2 w3,3 w3,4 w3,5

w4,1 w4,2 w4,3 w4,4 w4,5

w5,1 w5,2 w5,3 w5,4 w5,5



• U = {wi,j : i ∈ A, j ∈ B}: submatrix of Wn, where A,B ⊆ {1, 2, .., n}; we write Cartesian
product C = A×B, and we can write U = Wn[C].

Example: if A = {1, 3}, B = {2, 4}, then U = Wn[{1, 3} × {2, 4}] is[
w1,2 w1,4

w3,2 w3,4

]
• F (U): the average of submatrix U ,

F (U) =
1

|C|
∑

(i, j)∈C

wi, j =
1

|A||B|
∑

i∈A, j∈B
wi, j

• Kτ (Wn): the largest k ≥ 0 such that Wn contains a k × k submatrix U with F (U) ≥ τ for
fixed τ > 0 and n ≥ 1.

• Γk(n, τ), the number of k × k submatrices in Wn with average ≥ τ :

Γk(n, τ) =
∑
U∈Sk

1F (U)≥τ

where Sk denotes all the k × k submatrices of Wn.
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3.2 Mathematical Derivation

In this derivation part of the section, we follow exactly the steps of the article written by Sun and
Nobel (2013), but we include more detail to let the original paper reading-friendly to those who
do not have a very concrete math background. The main idea of the deduction in this report is
to find an upper and a lower bound of Kτ (Wn), and then after some manipulation, we obtain an
almost sure limit behavior of Kτ (Wn) by sending n, the dimension of Gaussian random matrix, to
infinity.

First, we start from deducing there exists a special positive real value that is unique and when k
is greater than such value, the expected number of k × k submatrices U of Wn with F (U) ≥ τ is
less than one.

Note that we have
F (Wk ≥ τ) = 1− Φ(τk),

where Φ(·) represents the normal cumulative distribution function (CDF).

Proof. Since for any i = 1, 2, . . . , k2, we have Xi ∼ N (0, 1), and that∑k2

i=1√
k2
∼ N (0, 1).

We have

F (Wk) =

∑k2

i=1

k2
∼ N (0,

1

k2
).

As a result, we have

F (Wk ≥ τ) =

∫ ∞
τ

1√
2πk2

e−
x2

2σ2 dx

=

∫ ∞
τk

1√
2π
e−

t2

2 dt

= 1−
∫ τk

−∞

1√
2π
e−

t2

2 dt

= 1− Φ(τk).

Now, we are able to deduce an expression of the expected number of k×k submatrices in Wn with
average ≥ τ

EΓk(n, τ) =(total number of k × k submatrices of Wn)×
(probability of the average of a k × k submatrix ≥ τ)

=|Sk|P(F (Wk) ≥ τ)

=

(
n
k

)2

(1− Φ(τk)).

Using a standard bound on (1− Φ(·)), i.e., (1− Φ(τk)) ≤ e− τ
2k2

2 to get an upper bound,

EΓk(n, τ) ≤
(
n
k

)2

e−
τ2k2

2 . (1)

By application a slight variation version of Stirling approximation,
√

2πn(ne )ne
1

12n+1 ≤ n! ≤√
2πn(ne )ne

1
12n (Maria, 1965), to represent the combination; and rewrite the upper bound. Equa-

6



tion (1) becomes

EΓk(n, τ) ≤
(
n
k

)2

e−
τ2k2

2

≤
( √

2πn(ne )ne
1

12n

√
2πk(ke )ke

1
12k+1

√
2π(n− k)(n−ke )n−ke

1
12(n−k)+1

)2

e−
τ2k2

2

=
( 1√

2π

√
n

k(n− k)

nn

kk(n− k)n−k
e(1−144k2−144n2+144nk−12n)

)2

e−
τ2k2

2

≤
( 1√

2π
nn+ 1

2 k−k−
1
2 (n− k)−(n−k)− 1

2

)2

e−
τ2k2

2 .

where the last inequality is obtained from the fact that 144nk − 144n2 ≤ 0 as n ≥ k; and 1 −
144k2 − 12n ≤ 0 as n ≥ 1, 1 ≤ k ≤ n. So we have e(1−144k−144n2+144nk−12n) ≤ 1 for any n and k
positive.

We now define a new function named φn,τ (s). And for s ∈ (0, n), we have

φn,τ (s) =
1√
2π
nn+ 1

2 s−s−
1
2 (n− s)−(n−s)− 1

2 e−
τ2s2

4 .

Then we have

EΓk(n, τ) ≤
( 1√

2π
nn+ 1

2 k−k−
1
2 (n− k)−(n−k)− 1

2

)2

e−
τ2k2

2

=
( 1√

2π
nn+ 1

2 k−k−
1
2 (n− k)−(n−k)− 1

2 e−
τ2k2

4

)2

=2φn,τ (k)2. (2)

We consider the positive real root, s(n, τ), of the equation

φn,τ (s) =
1√
2
.

Now we introduce an lemma saying that the root of equation φn,τ (s) = 1√
2

exists and is unique.

Lemma 1. Let τ > 0 be fixed. When n is sufficiently large, the equation φn,τ (s) = 1 has a unique
positive real root s(n, τ), and

s(n, τ) =
4

τ2
lnn− 4

τ2
ln
( 4

τ2
lnn

)
+

4

τ2
+ o(1)

where o(1)→ 0 as n→∞.

Proof. (Proof of Lemma 1)

Let τ > 0 be fixed, and currently we have

φn,τ (s) =
1√
2π
nn+ 1

2 s−s−
1
2 (n− s)−(n−s)− 1

2 e−
τ2s2

4 .

We multiply
√

2 from both sides and then taking logarithms to both sides of the equation, we have

ln
(√

2φn,τ (s)
)

= −1

2
lnπ + (n+

1

2
) lnn− (s+

1

2
) ln s− (n− s+

1

2
) lnn− s− τ2s2

4
.

Differentiating ln
(√

2φn,τ (s)
)

with respect to s yields

∂ ln
(√

2φn,τ (s)
)

∂s
=

1

2(n− s)
+ ln (n− s) =

1

2s
− ln s− sτ2

2
. (3)

From the expression of Equation (3), we have it is negative when 2 lnn
τ2 < s < 4 lnn

τ2 . Now, we

calculate the value of lnφn,τ (s) for s outside such interval, and when 0 < s ≤ 2 lnn
τ2 , we have

ln
(√

2φn,τ (s)
)
≥ s
(

ln (n− 2 lnn

τ2
)− sτ2

4
− ln lnn− ln

2

τ2

)
− ln s

2
− lnπ

2
,
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which is positive when n is large enough.

We apply the expression of ln
(√

2φn,τ (s)
)

to find an upper bound

ln
(√

2φn,τ (s)
)

= −1

2
lnπ + (n+

1

2
) lnn− (s+

1

2
) ln s− (n− s+

1

2
) lnn− s− τ2s2

4

≤ (n+
1

2
) lnn− (s+

1

2
) ln s− (n− s+

1

2
) lnn− s− τ2s2

4

= s
(

ln (n− s)− sτ2

4
− ln s

)
− ln s

2
+ (n+

1

2
) ln

n

n− s
.

Then, we have the right-hand side of the inequality is negative when s > n − 2. We consider the
cases s + 2 < n < s ln s

2 ln 2 and n ≥ s ln s
2 ln 2 , and we can bound the (n + 1

2 ) ln n
n−s by s ln s

2 + ln 2
2 and

2s+ ln 2
2 respectively. Thus, we have for s < n− 2

ln
(√

2φn,τ (s)
)
≤ s
(

ln (n− s)− sτ2

4
− ln s

)
− ln s

2
+ 2s+

s ln s

2
+

ln 2

2
.

Moreover, when 4 lnn
τ2 ≤ s < n− 2, we have

ln
(√

2φn,τ (s)
)
≤ s
(

2− ln s

2

)
− ln s

2
+

ln 2

2
< 0,

when n and s are large enough. Therefore, for large n, there exists a unique solution s(n, τ) of the
equation

√
2φn,τ (s) = 1, i.e., φn,τ (s) = 1√

2
with φn,τ (s) ∈ ( 2 lnn

τ2 , 4 lnn
τ2 ).

Taking the logarithms of both sides of the equation
√

2φn,τ (s) = 1 and rearranging terms yields

(
1

2
+ n) ln

n

n− s
− (s+

1

2
) ln s+ s ln (n− s)− τ2s2

4
=

lnπ

2
.

Now we consider the case where s and n
s tend to infinity with n. Dividing both sides of last

expression by s, we have

ln (n− s)− sτ2

4
− ln s = −1 +O(

ln s

s
),

which equals to

ln (n− s)− lnn+ lnn− sτ2

4
− ln s+ ln lnn− ln lnn = −1 +O(

ln s

s
).

After simplifying the equation, we have

lnn− sτ2

4
− ln lnn = ln

s

lnn
− ln

(n− s
n

)
− 1 +O(

ln s

s
) (4)

For each n ≥ 1, we define R(n) via the equation

s(n, τ) =
4 lnn

τ2
− 4 ln lnn

τ2
+R(n)

Plugging the expression into Equation (4), we have

R(n) =
4

τ2
(1− ln

4

τ2
) + o(1).

Thus, we have

s(n, τ) =
4

τ2
lnn− 4

τ2
ln
( 4

τ2
lnn

)
+

4

τ2
+ o(1)

We have s(n, τ) exists and is unique, combining that if a value k > s(n, τ), then φn,τ (k) < 1√
2
;

and combining the upper bound (2), we have deduced

EΓk(n, τ) ≤ 2φn,τ (k)2

We are able to conclude that
EΓk(n, τ) ≤ 1

8



which means the expected number of k × k submatrices U of Wn with F (U) ≥ τ is less than one.

Second, we start to deduce when n is sufficient large, the largest value k such that n×n Gaussian
matrix Wn contains a k × k submatrix U with average greater or equal to τ for some fixed τ > 0
has almost surely upper and lower bound. We derive the conclusion by the following 2 steps:

• Step 1: Derive the upper bound
We introduce two necessary results (Sun and Nobel, 2013) to derive the upper bound:

Proposition 1. Let τ > 0 be fixed. When n is sufficiently large, we have

P(Kτ (Wn) ≥ s(n, τ) + r) ≤ 2e
2
τ2 n−2r

(4 lnn

τ2

)2

for every r = 1, 2, . . . , n.

Notice Proposition 1 shows that the probability of seeing large-average submatrices is small.

Lemma 2. (Borel-Cantelli I) If
∑
n P(An) <∞, then P(An infinitely often) = 0.

An upper bound for Kτ (Wn) containing s(n, τ) can be obtained by applying Proposition 1
and Lemma 2 directly that

Kτ (Wn) ≤ ds(n, τ)e+ 1 ≤ s(n, τ) + 2

almost surely.

Proof. (Proof of upper bound)

Let τ > 0 be fixed and for every r = 1, 2, . . . , n, we denote a set Ar by

Ar = {Kτ (Wn) ≥ s(n, τ) + r,Kτ (Wn) ≤ s(n, τ) + (r + 1)}

for n large enough.

Then, we have
∪∞r=1Ar = {Kτ (Wn) ≥ s(n, τ) + 1}.

Since Ar is almost disjoint for r = 1, 2, . . . , n, we have when n approaches to infinity, by
Proposition 1

∞∑
r=1

P(Ar) = P(∪∞r=1Ar) = lim
n→∞

2e
2
τ2 n−2r

(4 lnn

τ2

)2

= 0.

Then we have P(Ar infinitely often) = 0, and by Lemma 2, we have

Kτ (Wn) ≤ ds(n, τ)e+ 1 ≤ s(n, τ) + 2

almost surely.

• Step 2: Derive the lower bound
We first introduce a result derived by Sun and Nobel (2013) which we will use when derive
the lower bound of Kτ (Wn):

Lemma 3. Let τ > 0 be fixed. When k is sufficiently large, for every integer n satisfying
the condition

k ≤ 4

τ2
lnn− 4

τ2
ln
( 4

τ2
lnn

)
− 12 ln 2

τ2
(5)

we have the bound
V ar Γk(n, τ)

(E Γk(n, τ))2
≤ k−2

Proof. (Sketch proof of Lemma 3)

First we find an upper bound for V ar Γk(τ,n)
(EΓk(τ,n))2 .
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Lemma 4. Fix τ > 0. There exist integers n0, k0 ≥ 1 and a positive constant C depending
on τ but independent of k and n, such that for any n ≥ n0 and any k ≥ k0, we have

V ar Γk(τ, n)

(EΓk(τ, n))2
≤ Ck4

k∑
l=1

k∑
r=1

(
k
l

)(
n− k
k − l

)
(
n
k

)
(
k
r

)(
n− k
k − r

)
(
n
k

) exp {rlτ
2

2
(1 +

k2 − rl
k2 + rl

)}

Proof. (Sketch proof of Lemma 4)

Note that we have
V ar Γk(n, τ) = EΓ2

k(n, τ)− (EΓk(n, τ))2

where we are able to derive that

EΓk(n, τ) =
∑
U∈Sk

P(F (U) > τ) =

(
n
k

)2

(1− Φ(kτ)).

For 1 ≤ r, l ≤ k, we define

G(r, l) = P(F (U) > τ andF (V ) > τ)

where U and V are two fixed k×k submatrices of W having r rows and l solumns in commom,
then we have

EΓ2
k(n, τ) =

k∑
r=0

k∑
l=0

(
n
k

)2(
k
r

)(
n− k
k − r

)(
k
l

)(
n− k
k − l

)
G(r, l)

Thus, we have an upper bound of V ar Γk(τ,n)
(EΓk(τ,n))2 , which is

V ar Γk(τ, n)

(EΓk(τ, n))2
≤

k∑
r=0

k∑
l=0

(
k
l

)(
n− k
k − l

)
(
n
k

)
(
k
r

)(
n− k
k − r

)
(
n
k

) [ G(r, l)

(1− Φ(kτ))2
− 1
]

Then we can find an upper bound of G(r,l)
(1−Φ(kτ))2 − 1, i.e., there exists a positive constant C

depends on τ but not on k and n such that

G(r, l)

(1− Φ(kτ))2
− 1 ≤ Ck4 exp {rlτ

2

2
(1 +

k2 − rl
k2 + rl

)}

Then, after having derived Lemma 4, to prove Lemma 3, it suffices for us to show when n
satisfies the condition inequality (5), we have

k4
k∑
l=1

k∑
r=1

(
k
l

)(
n− k
k − l

)
(
n
k

)
(
k
r

)(
n− k
k − r

)
(
n
k

) exp {rlτ
2

2
(1 +

k2 − rl
k2 + rl

)} ≤ k−2 (6)

Therefore, to prove Inequality (6), we can show that each term in the sum is less than k−8.
We derive the following four inequalities, which are

– Inequality 1:(
k
l

)(
n− k
k − l

)
(
n
k

) ≤

(
k
l

)
kl(n− k)k−l

(n− k)k
=

(
k
l

)
kl(n− k)−l

10



– Inequality 2:(
k
l

)(
n− k
k − l

)
(
n
k

)
(
k
r

)(
n− k
k − r

)
(
n
k

) ≤ C
(
k
r

)(
k
l

)
kr+ln−(r+l)

– Inequality 3:

n−(r+l) exp {rlτ
2

2
(1 +

k2 − rl
k2 + rl

)}

≤
(4 lnn

τ2

)−(r+l)
exp {−3(r + l) ln 2} exp

{τ2

2
(

2k2rl

k2 + rl
− k(r + l)

2
)
}

– Inequality 4:(
k
r

)(
k
l

)
e−3(r+l) ln 2 exp

{τ2

2
(

2k2rl

k2 + rl
− k(r + l)

2
)
}
≤ k−8.

Finally, combining these four inequalities together, we have each term in the sum is less than
k−8, which completes the proof of Lemma 3.

By Lemma 3, with the help of Borel-Cantelli Lemma and Chebyshev’s inequality, we obtain
an almost sure lower bound of Kτ (Wn), which is

Kτ (Wn) ≥ s(n, τ)− 4

τ2
− 12 ln 2

τ2
− 4.

Third, we derive the almost sure limit behavior of Kτ (Wn). By the previous two steps, we have
our almost sure asymptotic upper and lower bound of the random variable Kτ (Wn) illustrated in
the following theorem.

Theorem 1. Let Wn, n ≥ 1, be Gaussian random matrices derived from an infinite array W , and
let τ > 0 be fixed. When n is sufficiently large,

s(n, τ)− 4

τ2
− 12 ln 2

τ2
− 4 ≤ Kτ (Wn) ≤ s(n, τ) + 2

almost surely.

Now, we are able to derive the conclusion easily by sandwiching shown below.

Divide the conclusion in Theorem 1 by 4
τ2 lnn, we obtain

s(n, τ)− 4
τ2 − 12 ln 2

τ2 − 4
4
τ2 lnn

≤ Kτ (Wn)
4
τ2 lnn

≤ s(n, τ) + 2
4
τ2 lnn

Substitute the expression of s(n, τ) that we derived in Lemma 1, the almost sure lower bound is

lower bound =

4
τ2 lnn− 4

τ2 ln
(

4
τ2 lnn

)
− 12 ln 2

τ2 − 4 + o(1)

4
τ2 lnn

= 1−
ln
(

4
τ2 lnn

)
lnn

− 3 ln 2

lnn
− τ2

lnn
+
τ2o(1)

4 lnn

→ 1

as n→∞.

11



Similarly, the almost sure upper bound is

upper bound =

4
τ2 lnn− 4

τ2 ln
(

4
τ2 lnn

)
+ 4

τ2 + 2 + o(1)

4
τ2 lnn

= 1−
ln
(

4
τ2 lnn

)
lnn

+
1

lnn
+

τ2

2 lnn
+
τ2o(1)

4 lnn

→ 1

when n→∞.

By sandwiching, we have
Kτ (Wn)

4
τ2 lnn

→ 1

almost surely as n→∞.

So when n is sufficient large, the largest value k such that n × n Gaussian matrix Wn contains a
k × k submatrix U with average greater or equal to τ for some fixed τ > 0 approaches to 4

τ2 lnn
almost surely.

4 Numerical Evaluation

In this section, we introduce our original algorithm to find the largest size of square submatrices
with average greater than a positive fixed number τ in a Gaussian random matrix. The algorithm
is described in the first part of this section; and the numerical results is described in the second
part of this section.

4.1 Algorithm

Algorithem 1. Large-Average Submatrix Threshold Searcher

1. Input an n× n dimensional Gaussian random matrix named Wn, and a fixed positive value
named τ ;

2. Rearrange columns of matrix Wn such that the column with largest sum is placed on the first
column, till the column with smallest sum becomes the last column of the matrix, and do the
same for the rows of matrix Wn. We denote the new matrix as Wnew

n ;

3. Initialize i = 0, i denotes the current dimension of submatrix;

4. Start to check submatrix with dimension i = i+ 1:

We evaluate whether the average of i dimensional principal minor of Wnew
n is greater than

τ :

• If True, go to Step 4;

• If False, go to Step 5;

5. Find the i × i dimensional submatrix which contains the most largest i elements of Wnew
n ,

and evaluate whether the average of such submatrix is greater than τ :

• If True, go to Step 4;

• If False, go to Step 6;

6. Enumerate all the i × i submatrices of Wnew
n , and evaluate whether the average of each

submatrix is greater than τ :

• If one submatrix has average greater than τ , then stop enumerating and go to Step 4;

• If no submatrix has average greater than τ , then output i−1 to be the largest dimension
of submatrices that have average greater than τ .
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4.2 Numerical Results

To examine the relation between largest size of submatrices with average greater than a certain
fixed positive number in an Gaussian random matrix and the dimension of the Gaussian random
matrix, we evaluate the largest size of the submatrices with average greater than fixed value τ being
0.5, 1, 1.5, 2, 2.5, 3, when dimension n varies from 3 to 15. For each τ and each n, we calculate the
threshold for 100 times and evaluate the mean of the 100 values of the thresholds. The results are
presented in the following table:

Fixed value τ Dimension and Corresponding Result

Dimension 3 4 5 6 7 8 9

τ = 0.5 1.5500 2.2400 2.9900 3.3500 3.9600 4.3200 4.9400

Dimension 10 11 12 13 14 15

τ = 0.5 5.2400 5.8100 6.1900 6.5200 7.0300 7.4500

Dimension 3 4 5 6 7 8 9

τ = 1.0 0.9000 1.4300 1.6300 1.9500 2.1200 2.4300 2.6400

Dimension 10 11 12 13 14 15

τ = 1.0 2.8200 3.1200 3.3000 3.5800 3.7300 3.8300

Dimension 3 4 5 6 7 8 9

τ = 1.5 0.4300 0.6700 1.0000 1.0000 1.2100 1.3300 1.5200

Dimension 10 11 12 13 14 15

τ = 1.5 1.6400 1.8400 1.9400 2.0400 2.0500 2.1800

Dimension 3 4 5 6 7 8 9

τ = 2.0 0.1400 0.3300 0.4900 0.6100 0.6900 0.8300 0.9300

Dimension 10 11 12 13 14 15

τ = 2.0 0.9300 1.0200 1.0500 1.1500 1.2100 1.2000

Dimension 3 4 5 6 7 8 9

τ = 2.5 0.0300 0.0900 0.1100 0.2600 0.2400 0.2900 0.4400

Dimension 10 11 12 13 14 15

τ = 2.5 0.4400 0.4600 0.6600 0.6400 0.7700 0.7300

Dimension 3 4 5 6 7 8 9

τ = 3.0 0.0300 0.0200 0.1000 0.0300 0.0700 0.1000 0.0900

Dimension 10 11 12 13 14 15

τ = 3.0 0.1100 0.1600 0.2200 0.1600 0.2100 0.3300

Table 2: Results of τ = 0.5, 1, 1.5, 2, 2.5 in Different Dimensions

5 Discussion

In this section, we integrate the theoretical result and numerical result and examine their con-
sistency. We calculate the numerical result and theoretical result respectively when τ equals to
0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and n varies from 3 to 15 with the application of the algorithm presented
in Section 4 part 4.1 and the theoretical we derived before in Section 3, that when n is sufficient
large, the largest value k such that n× n Gaussian matrix Wn contains a k× k submatrix U with
average greater or equal to τ for some fixed τ > 0 approaches to 4

τ2 lnn almost surely. The results
are shown in Figure 3 to Figure 8

As we may observed from the graphs, the theoretical results are observed much larger than the
numerical results; and for each graph, when τ taking different values, the difference between the-
oretical results and numerical results become increasingly large. This phenomena may undermine

our conclusion deduced in Section 3 that Kτ (Wn)
4
τ2

lnn
→ 1 almost surely; and we post our analysis to

this inconsistency in the following two points:

• Impact from The Mistake Made in the Original Article
In the original article written by Sun and Nobel (2013), the authors derived the upper bound
for the expected value of Γk(n, τ), the number of k× k submatrices in Wn having an average
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Figure 3: Results of τ = 0.5 Figure 4: Results of τ = 1

Figure 5: Results of τ = 1.5 Figure 6: Results of τ = 2.0

Figure 7: Results of τ = 2.5 Figure 8: Results of τ = 3.0

greater than or equal to τ , to be

EΓk(n, τ) ≤ 2φn,τ (k)2

After the derivation of the upper bound for EΓk(n, τ), the authors present a lemma showing
the existence and uniqueness of the positive real of the equation φn,τ (s) = 1.

The problem occurs when the authors conclude that “for values of k greater than s(s, τ), the
expected number of k × k submatrices U of Wn with F (U) ≥ τ is less than one”. Actually,
when k greater than s(s, τ), we have φn,τ (s) ≤ 1; and hence we obtain

EΓk(n, τ) ≤ 2φn,τ (k)2 ≤ 2

14



Therefore, the correct conclusion is that for values of k greater than s(s, τ), the expected
number of k×k submatrices U of Wn with F (U) ≥ τ is less than two instead of one. In other
words, we should find the positive real root of equation φn,τ (s) = 1√

2
to ensure EΓk(n, τ) ≤ 1.

Although we have corrected the lemma in the original article with our refined proof (see
Lemma 1), we still cited the Proposition 1 and Lemma 3 which are based on the wrong version
of Lemma 1 in the original article. Therefore, we are still not clear whether the wrong version
of Lemma 1 will affect our almost sure upper and lower bound, and furthermore, affect the
limit behavior of our size threshold.

• The Small Value of Dimensions in Numerical Approach
Due to the computational restriction, our algorithm is only efficient when the dimensions of
Gaussian random matrix are relatively small, i.e., n ≤ 15. Moreover, since the question of
finding the largest threshold of the size of submatices with average greater than a certain
positive fixed number is itself a NP-complete question, we are only able to use enumeration
or enumeration-like algorithm such as our algorithm raised in Section 4, which is a slightly
optimized enumeration algorithm. This kind of question is computation expensive and we
will never obtain the results when n is large, especially when τ is also relative small. However,
our conclusion from theoretical deduction says that when the dimension n approaching to
infinity, the Kτ (Wn) shows the pattern approaching to 4

τ2 lnn almost surely. Our numerical
result only evaluates 3 ≤ n ≤ 15, which is far from infinity, and maybe when n is at such
range, the value of threshold does not show any convergence.

6 Conclusion

In conclusion, we summarize our original work for this project in the first part; and we conclude
our main results and propose some future work to this project in the second part.

6.1 Original Work

In this project, we analyze the maximal threshold of large-average submatices in a Gaussian random
matrix mainly based on the article written by Sun and Nobel (2013) with three points of our original
work listing in the following:

• We add more detail to some part of the proof and deduction when deriving the limit behavior
theoretically so that the article is more reading-friendly. Moreover, we refine the proof of
Lemma 1, which has a mistake that may undermine the theoretical analysis in the original
article.

• We design the optimized enumeration algorithm “Large-Average Submatrix Threshold Searcher”
to search the largest size of submatrices from Gaussian random matrix.

• We compare the numerical results by applying our original algorithm and theoretical results
from the article written by Sun and Nobel (2013); and we present two explanations for the
inconsistency of the results from different perspectives.

6.2 Conclusion and Future Work

In this report, based on the article “On the Maximal Size of Large-Average and ANOVA-Fit
Submatirces in a Gaussian Random Matrix” by Sun and Nobel, we reformulate the model of
finding the largest size of submatrices with average more than a fixed positive number in the
Gaussian random matrix following the same process as the original article with more details to
make it more smooth to read in terms of those without a very solid mathematical background.
Moreover, we also propose our self-designed optimized enumeration algorithm to search the largest
thresholds. We compare our numerical results and the theoretical results presented on the original
article and find appearance of inconsistency of two different approaches; and we propose our own
analysis for the inconsistency from both the theoretical perspective that the typo made by authors
of original article has a relatively huge impact on the process of derivation of the later parts and
eventually affect the conclusion, and the numerical perspective that the computational restriction
limits the dimension of Gaussian random matrix we are able to examine, resulting in the dimensions
not large enough to reach the critical value of convergence.
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In the future, due to the nature of a NP-complete question, we are not able to improve our
algorithm saving more time and hence examine a larger value of the dimensions of the submatrices
in the Gaussian random matrix. However, we are able to look into the proof of Proposition 1 and
Lemma 3 written by Sun and Nobel and try to refine the proof such that we are able to derive the
accurate expression for the almost sure upper and lower bound, and refine the part of deriving the
limit behavior of Kτ (Wn).
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matRearrange

evaluateLargestMat

model

outputResult

matRearrange

function y = matRearrange(mat) 

% This function input a matrix and return a new matrix with

% rearrange the order of the row sum and column sum from

% maximum to minimum. 

% Calculate the row sum and column sum 

colsum = sum(mat); 

rowsum = sum(mat'); 

% Rearrange the matrix from largest to smallest 

[~, colsort]=sort(-colsum); 

mat = mat(:,colsort); 

[~,rowsort]=sort(-rowsum); 

y = mat(rowsort,:); 

end

evaluateLargestMat

function y = evaluateLargestMat(mat,dim) 

% This function returns a submatrix which contains the largest

% (dim) number of matrix (mat) 

% Unique sorted values 

sortedValues = unique(mat(:)); 

% Get the dim largest values 

maxValues = sortedValues(end-dim+1:end); 

% Get a logical index of all values 

maxIndex = ismember(mat,maxValues); 

% Locate these values 

[m,n] = find(maxIndex==1); 

% Find the maximum matrix 

diffLength = 0; 

diffLength_previous = 0; 

% If some of the largest elements are in the same row or

% column, then we are able to find an extra largest number

% of element and hopefully this submatrix is the largest

% submatrix we can find without using enumeration.

while length(unique(m))~=dim || length(unique(n))~=dim 

    % If some of the largest (dim) elements share the same column 

    if  length(unique(m)) > length(unique(n)) 

sortedValues = unique(mat(unique(m),:)); 

diffLength_previous =diffLength; 

diffLength = diffLength + length(unique(m))-length(unique(n)); 

maxValues = sortedValues(end-(dim+diffLength)+1:end-(dim+diffLength_previous)); 

maxIndex = ismember(mat,maxValues); 

[temp_m,temp_n] = find(maxIndex==1); 

m = [m;temp_m]; 

n = [n;temp_n]; 

% If some of the largest (dim) elements share the same row 

Appendix



    elseif length(unique(m)) < length(unique(n)) 

        sortedValues = unique(mat(:,unique(n))); 

        diffLength_previous =diffLength; 

        diffLength = diffLength + length(unique(n))-length(unique(m)); 

        maxValues = sortedValues(end-(dim+diffLength)+1:end-(dim+diffLength_previous)); 

        maxIndex = ismember(mat,maxValues); 

        [temp_m,temp_n] = find(maxIndex==1); 

        m = [m;temp_m]; 

        n = [n;temp_n]; 

 

        % If the largest (dim) elements are in a small submatrix of the 

        % submatrix 

    elseif length(unique(m)) == length(unique(n)) 

        mat_temp=mat; 

        mat_temp(m,n) = -100; 

        sortedValues = unique(mat_temp(:)); 

        maxValues = sortedValues(end-(dim-length(unique(m)))+1:end); 

        maxIndex = ismember(mat_temp,maxValues); 

        [temp_m,temp_n] = find(maxIndex==1); 

        m = [m;temp_m]; 

        n = [n;temp_n]; 

        diffLength = 0; 

        diffLength_previous = 0; 

    end

end 

y = mat(unique(m),unique(n)); 

end

model

function result = model(mat,tau) 

% This function input the matrix with mat and average value

% tau and returns the value of largest size of matrix with

% average greater than tau. 

 

fprintf("Start to search the largest submatrix with average greater than tau \n") 

dim = 1:length(mat(:,1)); 

i = 1; 

succ = 0; 

mat = matRearrange(mat); 

 

% Check whether size i submatrix is the largest size of

% submatrix with average greater than tau.

while i <= length(dim) && succ == 0 

    % Apply the calculation-friendly way to check whether some of the 

    % average of current dimension matrix is greater than tau 

    fprintf('Checking the submatrix with size %24.16f; \n',i) 

    method1_result = sum(sum(mat(1:i,1:i))); 

    method2_result = sum(sum(evaluateLargestMat(mat,i))); 

    if method1_result > (tau*i^2) 

        succ_sub = 1; 

        result = i; 

        fprintf('Method 1 (size %24.16f submatrix) succeess; \n',i) 

    elseif method2_result > (tau*i^2) 

        fprintf('Method 2 (size %24.16f submatrix) success; \n',i) 

        succ_sub = 1; 

        result = i; 

    else 

        succ_sub = 0; 

        fprintf('Method 1 and 2 (size %24.16f submatrix) fail; \n',i) 

        fprintf('Start enumeration') 

    end 

    % If either of the method works, then we will go directly to i = i + 1; 

    % if not, we have to use enumeration in below 



 

    % Find all the combination of row and column 

    x = nchoosek(1:length(dim),i); 

    y = x; 

    % Initialization 

    temp_mat = eye(i); 

    j = 1; 

    while j <= length(x(:,1)) && succ_sub == 0 

        fprintf('Enumerate size %24.16f submatrix %24.16f/%24.16f time; \n',i,j,length(x(:,1))) 

        k = 1; 

        while k <= length(y(:,1)) && succ_sub == 0 

            temp_mat = mat(x(j,:),y(k,:)); 

            % Check whether the current matrix has sum 

            % greater than tau 

            if sum(sum(temp_mat)) > (tau*i^2) 

                % If it does, stop checking the size i 

                % by setting succ_sub = 1; and continue 

                % to check size i + 1 by setting succ = 0 

                succ_sub = 1; 

                succ = 0; 

                % The largest size of submatrix with 

                % average value greater than tau is i 

                result = i; 

            else 

                % If not, check next size i submatrix by 

                % setting succ_sub = 0; and if we check 

                % all the size i submatrix and no one is 

                % greater than tau, then stop by setting 

                % succ = 1 

                k = k + 1; 

                succ_sub = 0; 

                succ = 1; 

                % The largest size of submatrix with 

                % average value greater than tau is i - 1 

                result = i-1; 

            end 

        end 

        j = j + 1; 

    end 

    i = i + 1; 

end

end

outputResult

function result = outputResult(tau,maxDimension,iterationTimes) 

% This function input the fixed value tau, maximum dimension you want to

% check, and number of iterations for one dimension;

% The function returns a matrix with the first row being number of

% dimension, the second row being the theoretical value of corresponding

% dimension, and the third row being the real value of the corresponding

% dimension.

if maxDimension <= 3 

    fprintf('Please input a number with maximum size of the Gaussian matrix greater than 3') 

    result = 0; 

else 

   result_temp = zeros(iterationTimes,maxDimension-2); 

   for i = 3:maxDimension 

       for j = 1:iterationTimes 

           result_temp(j,i-2)=model(randn(i),tau); 

       end 

   end 

   n = 3:maxDimension; 

   % Calculate the theoretical value and the real value 



   meanLargestSize = mean(result_temp); 

   theoreticalValue = 4/(tau^2)*log(n); 

   result = [n;theoreticalValue;meanLargestSize]; 

   plot(n,meanLargestSize); 

   hold on; 

   plot(n,theoreticalValue); 

   legend('Numerical result','Theoratical result') 

   xlabel('n') 

   title('Plot of numerical and theoratical result of the maximum size of submatrix') 

   hold off; 

end
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